Math, asked by Mister360, 3 months ago

\sf Find\;median\;of\:the\:given\:data.

\boxed {\begin{array}{c|c|c|c|c|c|c}\bf {Class\:interval} &\sf 20-30 & \sf 30-40 &\sf 40-50 &\sf 50-60 & 60-70 &\sf 70-80 \\&&&&&&\\ \bf Frequency &\sf 10 &\sf 6 &\sf 8 &\sf 12 &\sf 5 &\sf 9 \\&&&&&&\\ \end {array}}

\underline{\sf Note:-}

\bull Construct a frequency table with your answer

\bull Spammed answers will be deleted .​

Answers

Answered by Anonymous
24

Explanation :

Table :

\boxed{\begin{array}{c|c|c}\bf \: Class \: interval&\bf \: Frequency&\bf Cumulative \: frequency \\\dfrac{\qquad\qquad}{}&\dfrac{\qquad\qquad}{}&\dfrac{\qquad\qquad\qquad}{}\\\sf20 - 30&\sf10&\sf10\\\sf30 - 40&\sf6&\sf16\\\sf40 - 50&\sf8&\sf24\\\sf50 - 60&\sf12&\sf36\\\sf60 - 70 &\sf5&\sf41\\\sf \: 70 - 80&9&50 \\ \dfrac{\qquad\qquad}{}&  \dfrac{\qquad\qquad}{ \sum   \sf \: f = 50 = n}& \dfrac{\qquad\qquad}{} \end{array}}

Median :

We know that,

 \sf \: M = l +  \left( \cfrac{ \cfrac{n}{2}  - cf}{f}  \right) \times h

Where,

  • L is Lower limit of Median Class

  • n is Total frequency

  • c.f is the cumulative frequency of the class preceding the Median Class

  • f is the frequency of the Median class

 \longrightarrow \sf \: M =  50 + \left(  \cfrac{ \cfrac{50}{2} - 24 }{12}\right) \times 12 \\  \\  \\  \longrightarrow  \sf M  = 50 +  \left(  \dfrac{25 - 24}{12}  \right) \times 12 \\  \\  \\ \longrightarrow  \sf M  = 50 +  \left(  \dfrac{1}{ \not{12}}  \right) \times \not{ 12} \\  \\  \\ \longrightarrow  \sf M  =50 +1 \\  \\  \\ \longrightarrow   \red{\sf  M  =51}

Median is 51.


Mister360: You used [tex]\boxed{\begin{array}{|c|c|c|}\bf \: Class \: interval&\bf \: Frequency&\bf Cumulative \: frequency \\\dfrac{\qquad\qquad}{}&\dfrac{\qquad\qquad}{}&\dfrac{\qquad\qquad\qquad}{}\\\sf20 - 30&\sf10&\sf10\\\sf30 - 40&\sf6&\sf16\\\sf40 - 50&\sf8&\sf24\\\sf50 - 60&\sf12&\sf36\\\sf60 - 70 &\sf5&\sf41\\\sf \: 70 - 80&9&50 \\ \dfrac{\qquad\qquad}{}& \dfrac{\qquad\qquad}{ \sum \sf \: f = 50 = n}& \dfrac{\qquad\qquad}{} \end{array}}[/tex]
Mister360: Correct one will be [tex]\boxed{\begin{array}{c|c|c}\bf \: Class \: interval&\bf \: Frequency&\bf Cumulative \: frequency \\\dfrac{\qquad\qquad}{}&\dfrac{\qquad\qquad}{}&\dfrac{\qquad\qquad\qquad}{}\\\sf20 - 30&\sf10&\sf10\\\sf30 - 40&\sf6&\sf16\\\sf40 - 50&\sf8&\sf24\\\sf50 - 60&\sf12&\sf36\\\sf60 - 70 &\sf5&\sf41\\\sf \: 70 - 80&9&50 \\ \dfrac{\qquad\qquad}{}& \dfrac{\qquad\qquad}{ \sum \sf \: f = 50 = n}& \dfrac{\qquad\qquad}{} \end{array}}[/tex]
Mister360: Now it's Looking perfect
Mister360: well done :-)
Mister360: thnx
Answered by MagicalLove
119

Step-by-step explanation:

Table:

\begin{gathered}\boxed{\begin{array}{|c|c|c|}\boldsymbol  \green{class \: interval}&\: \boldsymbol  \green{frequency}&\boldsymbol{ \green{Cumulative \: frequency}} \\\dfrac{\qquad\qquad}{}&\dfrac{\qquad\qquad}{}&\dfrac{\qquad\qquad\qquad}{}\\\tt \red{20 - 30}&\tt \blue{10}&\tt \pink{0 + 10 = 10}\\\tt \red{30 - 40}&\tt \blue6&\tt \pink{10 + 6 = 16}\\\tt \red{40 - 50}&\tt \blue8&\tt \pink{16 + 8 = 24}\\\tt \red{50 - 60}&\tt \blue{12}&\tt \pink{24 + 12 = 36}\\\tt \red{60 - 70 }&\tt \blue5&\tt \pink{36 + 5 = 41}\\\tt \red{ 70 - 80}& \tt \blue9& \tt \pink{41 + 9 = 50 }\\ \dfrac{\qquad\qquad}{}& \dfrac{\qquad\qquad} \purple{  \boldsymbol{\sum \: f = 50 = n}}& \dfrac{\qquad\qquad}{} \end{array}}\end{gathered}

Formula Used:

  \purple {\huge {\bull{ \boxed{Median \:  =  \: l +  \left( \dfrac{ \frac{n}{2} - cf }{f} \right ) \times h}}}}

  • l = lower limit of median class
  • n = number of observation
  • cf = cumulative frequency of class preceding the median class
  • f = frequency of median class
  • h = class size

Solution:

  :  \implies \gray{M \:  = 50 + \left ( \dfrac{ \dfrac{50}{2} - 24 }{12} \right) 12}

 :  \implies \gray{M \:  =50 +  \left( \dfrac{25 - 24}{12}  \right)12}

 :  \implies \gray{M \:  =50 +  \left( \dfrac{1}{ \cancel{12}} \right ) \cancel{12}}

 :  \implies \gray{M \:  =50 + 1}

 :  \implies \orange{M \:  =51}

° Median of the given data is 51 !!

#Make it easy !!


TheViens: can you please say me your name ?
MagicalLove: Sanjushri
TheViens: oh yeah now i got it :)
TheViens: from south india right ?
MagicalLove: Hmm
TheViens: yeah how i can forget my sister
MagicalLove: :) How r uh ?
mishraaryan473: hi
mishraaryan473: sister
Similar questions