Math, asked by Anonymous, 1 month ago

\sf Find  \: Value  \: of  \: \dfrac{12^4  \times 9^4 \times  4 }{6^3  \times 8^2  \times 27}

Answers

Answered by Anonymous
38

Refer this attachment

Hope it's help you

Attachments:
Answered by Anonymous
362

Need To Find Out :-

  • \sf  \: Value  \: of  \: \dfrac{12^4  \times 9^4 \times  4 }{6^3  \times 8^2  \times 27}\\

Solution :

\sf \purple {: \implies \dfrac{12^4  \times 9^4 \times  4 }{6^3  \times 8^2  \times 27}}\\\\

\sf : \implies \dfrac{(3 \times 2 \times 2)^4  \times ( {3}^{2} )^4 \times   {2}^{2} }{(2 \times 3)^3  \times ( {2}^{3} )^2  \times  {3}^{3} }\\\\

 \sf :\implies \dfrac{(3)^{4} \times ( {2}^{2} )^4  \times ( {3}^{8} ) \times   {2}^{2} }{ {2}^{3}  \times 3^3  \times {2}^{6}   \times  {3}^{3} }\\\\

 \sf :\implies \dfrac{3^{(4 + 8)} \times ( {2}^{8} )   \times   {2}^{2} }{ {2}^{(3 + 6)}   \times  {3}^{(3 + 3)} }\\\\

\sf : \implies \dfrac{3^{12} \times  {2}^{(8 + 2)}   }{ {2}^{9}   \times  {3}^{6} }\\\\

\sf :\implies \dfrac{3^{12 } \times  {2}^{10}   }{ {2}^{9}   \times  {3}^{6} }\\\\

\sf :\implies 3^{(12 - 6) } \times  {2}^{(10 - 9)} \\\\

\sf :\implies 3^{6} \times  {2}\\\\

\sf\purple{\boxed{   :\implies \: 1458}}\\\\

\sf \underline{\red { Need \: To \:Know :-}}\\

  • \sf  \green{ \: \dfrac{a^m}{a^n} \:  =  \: a^{m-n}}

  • \sf \green { \:  a^m \times  a^n = a^{m+n}}

  • \sf  \green { \: (a^m)^{n}  = a^{mn}}\\\\
Similar questions