Math, asked by saichavan, 2 days ago


 \sf \huge \orange{ \: Prove \: that :  - }

  \displaystyle \: \sf \green{ \bigg(1 +  \frac{1}{ { \tan(x) }^{2} } \bigg)  + \bigg(1 +  \frac{1}{ { \cot(x) }^{2} } \bigg) =  \frac{1}{ { \sin(x) }^{4}  -  \sin(x) {}^{2} }   }
No spam!
Only moderators!
No copy!​

Answers

Answered by HasiniandHarini
28

(1-tanx)^ ^ 2 + (1-cotx)^ ^ 2

=(1-2tan x +tan ^2x)+(1 1-2cotx+ ot^ ^ 2x)

=sec^2x+csc^2x-2(tanx+cotx)

=sec ^2x+csc^2x-2(sinx/cosx+cosx/sinx)

=sec ^2x+csc^2x-2[( sin^ ^ 2x+cos^ ^ 2x)/(cos x^ * ! sinx)]

=sec^ ^ 2x+c ^2x -2[1/(cos x *sinx)]

=sec^2x+csc^2x -2[(1/cos x )*(1/sinx)]

=sec ^2x+csc^2x-2secx ^ * cscx

=( x-csc x)^ ^

I hope this is helpful

Answered by mathdude500
27

Appropriate Question :- Prove that

\displaystyle \: \rm { \bigg(1 + \frac{1}{ { \tan}^{2}x} \bigg) + \bigg(1 + \frac{1}{ { \cot}^{2} x} \bigg) = \dfrac{1}{ { \sin}^{2}x - \sin{}^{4} x} } \\

\large\underline{\sf{Solution-}}

Consider LHS

\displaystyle \: \sf { \bigg(1 + \frac{1}{ { \tan}^{2}x} \bigg) + \bigg(1 + \frac{1}{ { \cot}^{2} x} \bigg) } \\

We know,

\boxed{ \rm{ \:tanx =  \frac{1}{cotx} \: }} \\

\boxed{ \rm{ \:cotx =  \frac{1}{tanx} \: }} \\

So, using these results, we get

\rm \:  =  \: (1 +  {cot}^{2}x) + (1 +  {tan}^{2}x) \\

\rm \:  =  \:  {cosec}^{2}x +  {sec}^{2}x \\

can be further rewritten as

\rm \:  =  \: \dfrac{1}{ {sin}^{2}x }  + \dfrac{1}{ {cos}^{2} x}  \\

\rm \:  =  \: \dfrac{ {cos}^{2}x +  {sin}^{2}x}{ {sin}^{2}x \:  {cos}^{2}x}  \\

\rm \:  =  \: \dfrac{ 1}{ {sin}^{2}x \:  {cos}^{2}x}  \\

\rm \:  =  \: \dfrac{ 1}{ {sin}^{2}x \: (1 -  {sin}^{2}x)}  \\

\rm \:  =  \: \dfrac{ 1}{ {sin}^{2}x \: -   \: {sin}^{4}x}  \\

Hence,

\boxed{ \rm{ \:\rm { \bigg(1 + \frac{1}{ { \tan}^{2}x} \bigg) + \bigg(1 + \frac{1}{ { \cot}^{2} x} \bigg) = \dfrac{1}{ { \sin}^{2}x - \sin{}^{4} x} }}} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:1 +  {tan}^{2}x =  {sec}^{2}x \: }} \\

\boxed{ \rm{ \:1 +  {cot}^{2}x =  {cosec}^{2}x \: }} \\

\boxed{ \rm{ \:secx =  \frac{1}{cosx}  \: }} \\

\boxed{ \rm{ \:cosecx =  \frac{1}{sinx}  \: }} \\

\boxed{ \rm{ \: {sin}^{2}x +  {cos}^{2}x = 1 \: }} \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 } \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions