No spam!
Only moderators!
No copy!
Answers
Answered by
28
(1-tanx)^ ^ 2 + (1-cotx)^ ^ 2
=(1-2tan x +tan ^2x)+(1 1-2cotx+ ot^ ^ 2x)
=sec^2x+csc^2x-2(tanx+cotx)
=sec ^2x+csc^2x-2(sinx/cosx+cosx/sinx)
=sec ^2x+csc^2x-2[( sin^ ^ 2x+cos^ ^ 2x)/(cos x^ * ! sinx)]
=sec^ ^ 2x+c ^2x -2[1/(cos x *sinx)]
=sec^2x+csc^2x -2[(1/cos x )*(1/sinx)]
=sec ^2x+csc^2x-2secx ^ * cscx
=( x-csc x)^ ^
I hope this is helpful
Answered by
27
Appropriate Question :- Prove that
Consider LHS
We know,
So, using these results, we get
can be further rewritten as
Hence,
Formulae Used :-
Additional information :-
Similar questions