Math, asked by Anonymous, 3 months ago

\sf if\: 2y = \bigg(cot^{-1}\bigg(\dfrac{\sqrt{3}cosx+sinx}{cosx-\sqrt{3}sinx}\bigg)\bigg)^2,x\in\bigg(0,\dfrac{\pi}{2}\bigg)
Then dy/dx is equal to

Answers

Answered by mathdude500
17

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf{ \: \dfrac{d}{dx} {x}^{n}  =  {nx}^{ n- 1} }}

 \boxed{ \bf{ \: \dfrac{d}{dx}x = 1}}

 \boxed{ \bf{ \:  {tan}^{ - 1} x +  {cot}^{ - 1}x  = \dfrac{\pi}{2} }}

 \boxed{ \bf{ \:  {tan}^{ - 1}x  +  {tan}^{ - 1} y =  {tan}^{ - 1} \bigg( \dfrac{x + y}{1 - xy} \bigg) }}

 \boxed{ \bf{ \:  {tan}^{ - 1} (tanx) = x}}

\large\underline{\sf{Solution-}}

 \rm :\longmapsto\:\sf \:  2y = \bigg(cot^{-1}\bigg(\dfrac{\sqrt{3}cosx+sinx}{cosx-\sqrt{3}sinx}\bigg)\bigg)^2

We know,

 \boxed{ \bf{ \:  {cot}^{ - 1} x = \dfrac{\pi}{2}  -  {tan}^{ - 1} x}}

So,

Given expression can be rewritten as

\rm :\longmapsto\: 2y = \bigg(\dfrac{\pi}{2}  - tan^{-1}\bigg(\dfrac{\sqrt{3}cosx+sinx}{cosx-\sqrt{3}sinx}\bigg)\bigg)^2

\rm :\longmapsto\: 2y = \bigg(\dfrac{\pi}{2}  - tan^{-1}\bigg(\dfrac{\sqrt{3} \: \dfrac{cosx}{cosx} +\dfrac{sinx}{cosx} }{1-\sqrt{3} \times \dfrac{sinx}{cosx} }\bigg)\bigg)^2

\rm :\longmapsto\: 2y = \bigg(\dfrac{\pi}{2}  - tan^{-1}\bigg(\dfrac{\sqrt{3}+tanx}{1-\sqrt{3}tanx}\bigg)\bigg)^2

Now,

We know that

  \boxed{ \bf{ \: {tan}^{ - 1} \bigg(\dfrac{x + y}{1 - xy} \bigg)  =  {tan}^{ - 1}x  +  {tan}^{ - 1}y}}

Therefore,

\rm :\longmapsto\: 2y = \bigg(\dfrac{\pi}{2}  - \bigg( tan^{-1} \sqrt{3} +  {tan}^{ - 1} (tanx) \bigg)\bigg)^2

\rm :\longmapsto\: 2y = \bigg(\dfrac{\pi}{2}  -  \dfrac{\pi}{3}   - x\bigg)^2

\rm :\longmapsto\: 2y = \bigg(\dfrac{\pi}{6}  -x \bigg)^2

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx} (2y) =\dfrac{d}{dx}  \bigg(\dfrac{\pi}{6}  -x \bigg)^2

\rm :\longmapsto\:  \cancel2\dfrac{dy}{dx} = \cancel2 \bigg(\dfrac{\pi}{6}  -x \bigg)\dfrac{d}{dx}\bigg(\dfrac{\pi}{6}  -x \bigg)

\rm :\longmapsto\: \dfrac{dy}{dx} = \bigg(\dfrac{\pi}{6}  -x \bigg)(0 - 1)

\bf\implies \:\dfrac{dy}{dx} = x - \dfrac{\pi}{6}

Answered by divyabachchani80
2

good \: morning \: dear \: \\ have \: a \: grt \: day \: ahead

Attachments:
Similar questions