Math, asked by MichWorldCutiestGirl, 9 hours ago


 \sf \: If 3x−y=12, what  \: is \:  the \:  value \:  of  \:  \frac{ {8}^{x} }{ {2}^{y} } \  \textless \ br /\  \textgreater \  \: ? \\
A) 212
B) 44
C) 82
D) The value cannot be determined from the information given.


▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answer with proper explanation.

Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​

Answers

Answered by anindyaadhikari13
18

\textsf{\large{\underline{Solution}:}}

Given Information:

 \rm \longrightarrow 3x - y = 12

Now consider the expression:

 \rm =  \dfrac{ {8}^{x} }{ {2}^{y} }

Can be written as:

 \rm =  \dfrac{( {2}^{3} )^{x} }{ {2}^{y} }

 \rm =  \dfrac{{2}^{3x}}{ {2}^{y} }

 \rm ={2}^{3x - y}

We know that 3x - y = 12. Therefore, we get:

 \rm ={2}^{12}

 \rm =4096

Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1


anindyaadhikari13: Thanks for the brainliest ^_^
Answered by prateekandpratu
1

Answer:

⟶3x−y=12

Now consider the expression:

\rm = \dfrac{ {8}^{x} }{ {2}^{y} }=2y8x

Can be written as:

\rm = \dfrac{( {2}^{3} )^{x} }{ {2}^{y} }=2y(23)x

\rm = \dfrac{{2}^{3x}}{ {2}^{y} }=2y23x

\rm ={2}^{3x - y}=23x−y

We know that 3x - y = 12. Therefore, we get:

\rm ={2}^{12}=212

\rm =4096=4096

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}Learn More:

\rm 1. \: \: {a}^{m} \times {a}^{n} = {a}^{m + n}1.am×an=am+n

\rm 2. \: \: ({a}^{m})^{n} = {a}^{mn}2.(am)n=amn

\rm 3. \: \: \dfrac{ {a}^{m} }{ {a}^{n} } = {a}^{m - n}3.anam=am−n

\rm4. \: \: {a}^{m} \times {b}^{m} = {(ab)}^{m}4.am×bm=(ab)m

\rm5. \: \: \bigg(\dfrac{a}{b} \bigg)^{m} = \dfrac{ {a}^{m} }{ {b}^{m} }5.(ba)m=bmam

\rm6. \: \: {a}^{ - n} = \dfrac{1}{ {a}^{n} }6.a−n=an1

\rm7. \: \: {a}^{n} = {b}^{n} \rightarrow a = b, n \neq0

Similar questions