Math, asked by Anonymous, 1 month ago


   \sf{if  \: a \:  b  \: c  \: and  \: d  \: are \:  in  \: proportion \: prove  \: that}  \\ \sf{abcd(  \: \frac{1}{a}^{2} +\frac{1}{b}^{2}\frac{1}{c}^{2} \: \frac{1}{d}^{2})= {a}^{2} {b}^{2} {c}^{2}}

Answers

Answered by kamalhajare543
16

Answer:

 \sf \: \red{Solution:-}

\sf \pink{Given:-}

\begin{gathered}\\\tt \longrightarrow\dfrac{a}{b} = \dfrac{c}{d} = k(const)\\ \end{gathered}

\begin{gathered}\\\tt \longrightarrow \: a= bk \: \: and \: \: c = dk\\ \end{gathered}

\begin{gathered}\\\tt \: \: \longrightarrow \: \: abcd \left( \dfrac{1}{a^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{c^{2}}+ \dfrac{1}{d^{2}} \right)\\ \end{gathered}

 \green{ \sf \: ✠Now  \: put  \: the \:  values –}

\begin{gathered}\\\tt \: \: \longrightarrow \: \: (bk)b(dk)d \left( \dfrac{1}{(bk)^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{(dk)^{2}}+ \dfrac{1}{d^{2}} \right)\\ \end{gathered}

\begin{gathered}\\\tt \: \: \longrightarrow \: \: b^{2} {d}^{2} k^{2} \left( \dfrac{1}{(bk)^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{(dk)^{2}}+ \dfrac{1}{d^{2}} \right)\\ \end{gathered}

\begin{gathered}\\\tt \: \: \longrightarrow \: \: b^{2} {d}^{2} k^{2} \left[\dfrac{ {d}^{2} + {d}^{2} {k}^{2} + {b}^{2} + {b}^{2} {k}^{2} }{b^{2}k^{2}d^{2}} \right]\\ \end{gathered}

\begin{gathered}\\\tt \: \: \red{ \longrightarrow \: \:{d}^{2} + {d}^{2} {k}^{2} + {b}^{2} + {b}^{2} {k}^{2}}\\ \end{gathered}

\begin{gathered}\\\tt \: \: \red{ \longrightarrow\: \:{d}^{2} +{(dk)}^{2} + {b}^{2} + {(bk)}^{2}}\\ \end{gathered}

\begin{gathered}\\\tt \: \: \red{ \longrightarrow \: \:{d}^{2} +c^{2} + {b}^{2} +a^{2}}\\ \end{gathered}

\begin{gathered}\\\tt \: \: \red{ \longrightarrow \: \:R.H.S}\\ \end{gathered}

✠Hence Proved

Answered by IIMASTERII
3

\Huge{\texttt{{{\color{Magenta}{⛄A}}{\red{N}}{\purple{S}}{\pink{W}}{\blue{E}}{\green{R}}{\red{♡}}{\purple{࿐⛄}}{\color{pink}{:}}}}}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

✠Given:-

\\\tt \longrightarrow\dfrac{a}{b}  =  \dfrac{c}{d} = k(const)\\

\\\tt \longrightarrow \: a= bk \:  \:  and \:  \: c = dk\\

\\\tt  \: \:  \longrightarrow  \:  \:  abcd \left( \dfrac{1}{a^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{c^{2}}+ \dfrac{1}{d^{2}} \right)\\

✠Now put the values –

\\\tt \: \: \longrightarrow \:  \:  (bk)b(dk)d \left( \dfrac{1}{(bk)^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{(dk)^{2}}+ \dfrac{1}{d^{2}} \right)\\

\\\tt \: \:  \longrightarrow  \:  \: b^{2} {d}^{2} k^{2}  \left( \dfrac{1}{(bk)^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{(dk)^{2}}+ \dfrac{1}{d^{2}} \right)\\

\\\tt \: \:   \longrightarrow \:  \: b^{2} {d}^{2} k^{2}  \left[\dfrac{ {d}^{2} +  {d}^{2}  {k}^{2}  +  {b}^{2}  +  {b}^{2}  {k}^{2}  }{b^{2}k^{2}d^{2}} \right]\\

\\\tt  \: \:  \orange{ \longrightarrow  \:  \:{d}^{2} +  {d}^{2}  {k}^{2}  +  {b}^{2}  +  {b}^{2}  {k}^{2}}\\

\\\tt \: \:  \orange{  \longrightarrow\:  \:{d}^{2} +{(dk)}^{2}  +  {b}^{2}  +  {(bk)}^{2}}\\

\\\tt  \: \:  \orange{  \longrightarrow \:  \:{d}^{2} +c^{2}  +  {b}^{2}  +a^{2}}\\

\\\tt \: \:  \orange{ \longrightarrow  \:  \:R.H.S}\\

✠Hence Proved

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

\huge\red{\boxed{\orange{\mathcal{{{\fcolorbox{red}{i}{{\red{@Master}}}}}}}}}

Similar questions