Math, asked by XtarLie, 1 month ago


 \sf{If \: A~ = \: \bigg[ \begin{matrix} \theta&  -  \sin \theta \\ sin \theta& cos \theta \end{matrix} \bigg],} \: find \: the \: values
 \sf{}of  \: \theta \: satisfying \: the \: equation \:
 {A}^{T}  + A \:  \:  \: I_2.

Answers

Answered by tvakhilknr
1

Please refer the attachment.

Attachments:
Answered by Anonymous
14

Appropriate Question :-

If  {\sf A = \bigg[ \begin{matrix} \theta& - \sin \theta \\ \sin \theta& \cos \theta \end{matrix} \bigg] }

Then , find the value of  \theta . Which satisfies the equation  {\sf A^{T} + A = I_{2}}. Where  {\sf I_2 } is the identity matrix .

Solution :-

Before starting the answer , let's recall ;

Transpose of a matrix is given by interchanging row and columns of the matrix and is written as  \bf A^{T} . And Identity matrix is basically a diagonal matrix . In addition of matrices with same order , we add the corresponding elements and form a matrix of same order and if it is in a equation we can equate corresponding elements too . Also , identity matrix is given by :-

 {\sf \quad \leadsto \quad  \bigg[ \begin{matrix} 1&  0 \\ 0& 1 \end{matrix} \bigg] }

__________________________

Now , Consider ;

  •  {\sf A = \bigg[ \begin{matrix} \theta& - \sin \theta \\ \sin \theta& \cos \theta \end{matrix} \bigg] }

Now , By interchanging row and columns we have the transpose of A as follows ;

 {\quad \leadsto \quad \sf A^{T} = \bigg[ \begin{matrix} \theta&  \sin \theta \\ - \sin \theta& \cos \theta \end{matrix} \bigg] }

Now , According to the question ;

 {\quad \leadsto \quad \sf A^{T} + A = I_{2}}

Here , the Identity matrix is of 2 × 2 order as it is {\sf I_2}

 { : \implies \quad \sf \sf  \bigg[ \begin{matrix} \theta& - \sin \theta \\ \sin \theta& \cos \theta \end{matrix} \bigg] + \sf \bigg[ \begin{matrix} \theta&  \sin \theta \\ - \sin \theta& \cos \theta \end{matrix} \bigg] = \sf \bigg[ \begin{matrix} 1&  0 \\ 0& 1 \end{matrix} \bigg] }

 { : \implies \quad \sf \bigg[ \begin{matrix} \theta + \theta& - \sin \theta + \sin \theta \\ \sin \theta - \sin \theta & \cos \theta + \cos \theta \end{matrix} \bigg] = \sf \bigg[ \begin{matrix} 1&  0 \\ 0& 1 \end{matrix} \bigg] }

 { : \implies \quad \sf \bigg[ \begin{matrix} 2 \theta& - \cancel{\sin \theta} + \cancel{\sin \theta} \\ \cancel{\sin \theta} - \cancel{\sin \theta} & 2 \cos \theta \end{matrix} \bigg] = \sf \bigg[ \begin{matrix} 1&  0 \\ 0& 1 \end{matrix} \bigg] }

 { : \implies \quad \sf \bigg[ \begin{matrix} 2 \theta& 0\\ 0 & 2 \cos \theta \end{matrix} \bigg] = \sf \bigg[ \begin{matrix} 1&  0 \\ 0& 1 \end{matrix} \bigg] }

Equating corresponding elements we have ;

 { : \implies \quad \sf 2\theta = 1 \quad \qquad or \quad \qquad 2 \cos \theta = 1 }

 { : \implies \quad \sf \theta = \dfrac{1}{2} \quad \qquad or \quad \qquad  \cos \theta = \dfrac{1}{2} }

 { : \implies \quad \sf \theta = \dfrac{1}{2} \quad \qquad or \quad \qquad  \cos \theta = \cos \bigg( \dfrac{\pi}{3} \bigg) }

 { : \implies  \quad  \quad \bf \theta = \dfrac{1}{2} \quad \qquad or \quad \qquad   \theta = \dfrac{\pi}{3} }

But for  \bf \theta = \cfrac{1}{2} the whole matrix willn't equal to the required .So writing here  \cos \theta as principal solution we may write it as ;

 { : \implies  \quad  \therefore \quad \bf \theta = 2n \pi \pm \dfrac{\pi}{3} \quad \forall \quad n \: \in \mathbb Z }

Henceforth , for { \bf \theta = 2n \pi \pm \dfrac{\pi}{3} \quad \forall \quad n \: \in \mathbb Z } the above equation will be satisfied :D

Used Concepts :-

  •  \sf \cos \bigg( \dfrac{\pi}{3}\bigg) = \dfrac{1}{2}
Similar questions