Math, asked by saryka, 2 months ago

\sf If\; A = \left [ \begin{array}{c c c} - & 1 \\ \\ 0 & 9 \\ \\ \end {array} \right]\sf and\; f(x) = 2x^2 -3x\; then\; f(A) = a) \left [ \begin{array}{c c c} 14 & 1 \\ \\ 0 & -9 \\ \\ \end {array} \right] b) \left [ \begin{array}{c c c} -14 & 1 \\ \\ 0 & 9 \\ \\ \end {array} \right] c) \left [ \begin{array}{c c c} 14 & 1 \\ \\ 0 & 9 \\ \\ \end {array} \right] d) \left [ \begin{array}{c c c} -14 & -1 \\ \\ 0 & -9 \\ \\ \end {array} \right]

Answers

Answered by mathdude500
91

Correct Question :-

\begin{gathered}\sf If\;A = \left [ \begin{array}{c c c} -2 & 1 \\ \\ 0 & 3  \end {array} \right]\sf and\; f(x) = 2 {x}^{2}  -3x\;then\;f(A) = \\\\\\ \sf a) \left [ \begin{array}{c c c} 14 & 1 \\ \\ 0 & -9  \end {array} \right] \\\\\\ \sf b) \left [ \begin{array}{c c c} -14 & 1 \\ \\ 0 & 9 \end {array} \right] \\\\\\ \sf c) \left [ \begin{array}{c c c} 14 & -1 \\ \\ 0 & 9  \end {array} \right] \\\\\\ \sf d) \left [ \begin{array}{c c c} -14 & -1 \\ \\ 0 & -9  \end {array} \right]\end{gathered}

Solution :-

Given that

\rm :\longmapsto\:A = \: \begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix}

Consider,

\rm :\longmapsto\: \:  {A}^{2}

 \:  \sf \:  \:  =  \:  \: A \times A

 \:  \sf \:  \:  =  \:  \: \: \begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix} \times \: \begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix}

 \:  \sf \:  \:  =  \:  \: \: \begin{bmatrix}  - 2 \times ( - 2) + 1 \times 0 &   - 2 \times 1 + 1 \times 3\\ 0 \times ( - 2) + 3 \times 0 & 0 \times 1 + 3 \times 3\end{bmatrix}

 \:  \sf \:  \:  =  \:  \: \: \begin{bmatrix}   4 &  1\\ 0 & 9\end{bmatrix}

Now,

We have to given that

\rm :\longmapsto\:f(x) =  {2x}^{2} - 3x

Thus,

\rm :\longmapsto\:f(A) =  {2A}^{2} - 3A

 \:  \sf \:  \:  =  \:  \: \: 2\begin{bmatrix}   4 &  1\\ 0 & 9\end{bmatrix} - 3\: \begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix}

 \:  \sf \:  \:  =  \:  \: \: \begin{bmatrix}   8 &  2\\ 0 & 18\end{bmatrix} - \: \begin{bmatrix}  - 6 &  3\\ 0 & 9\end{bmatrix}

 \:  \sf \:  \:  =  \:  \: \: \begin{bmatrix}   8 + 6 &  2 - 3\\ 0 - 0 & 18 - 9\end{bmatrix}

 \:  \sf \:  \:  =  \:  \: \: \begin{bmatrix}   14 &   - 1\\ 0 & 9\end{bmatrix}

\rm :\implies\:Option  \: (c) \: is \: correct.

Additional Information :-

1. Matrix multiplication is not Commutative always, i.e. AB may or may not be equal to BA.

2. Matrix multiplication is associative, i.e A(BC) = (AB)C.

3. Matrix multiplication is distributive, i.e A(B + C) = AB + AC.

4. There exist a matrix I such that AI = IA = A.

Similar questions