CBSE BOARD X, asked by itsmysticaldimple, 5 months ago

\sf\ If\ \ abx^2= (a-b)^2(x+1)\\ \\ \sf\ then\ find\ the \ value\ of\ \\ \\ \sf\ x+\dfrac{4}{x^2}+\dfrac{4}{x}

Answers

Answered by itzpriya22
6

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the concept of Algebraic Identities has been used . We see we are given a equation from that we have to find other . So firstly we can simplify the value of first equation and then apply in second .

Let's do it !!

______________________________________________

★ Correct Question :-

If abx² = (a - b)² (x + 1) then find,

\\\;\sf{\pink{\mapsto\;\;1\;+\;\dfrac{4}{x^{2}}\;+\;\dfrac{4}{x}}}

______________________________________________

Solution :-

Given,

\\\;\sf{\orange{:\rightarrow\;\;abx^{2}\;=\;\bf{(a\;-\;b)^{2}\:(x\;+\;1)}}}

• Now simplifying this value, we get,

\\\;\sf{:\Longrightarrow\;\;abx^{2}\;=\;\bf{(a\;-\;b)^{2}\:(x\;+\;1)}}

• Transposing similar terms to other side, we get,

\\\;\sf{:\Longrightarrow\;\;\dfrac{ab}{\blue{(a\;-\;b)^{2}}}\;=\;\bf{\dfrac{(x\;+\;1)}{\blue{x^{2}}}}}

\\\;\sf{:\Longrightarrow\;\;\dfrac{ab}{(a\;-\;b)^{2}}\;=\;\bf{\bigg(\dfrac{x}{x^{2}}\bigg)\;+\;\bigg(\dfrac{1}{x^{2}}\bigg)}}

Cancelling x, we get

\\\;\sf{:\Longrightarrow\;\;\green{\dfrac{ab}{(a\;-\;b)^{2}}}\;=\;\bf{{\bigg(\dfrac{1}{x}\;+\;\dfrac{1}{x^{2}}\bigg)}}}

Let this be equation i) .

____________________________

~ To find the required value ::

Its given that,

\\\;\sf{\rightarrow\;\;1\;+\;\dfrac{4}{x}\;+\;\dfrac{4}{x^{2}}}

\\\;\sf{\Longrightarrow\;\;1\;+\;\bf{\bigg(\dfrac{4}{x}\;+\;\dfrac{4}{x^{2}}\bigg)}}

• Here we see that 4 is a common term in both fractions. So taking that in common we get,

\\\;\sf{\Longrightarrow\;\;1\;+\;\bf{\red{4}\:\bigg(\dfrac{1}{x}\;+\;\dfrac{1}{x^{2}}\bigg)}}

• We see that term here and in equation i) is common. So applying that value, we get,

\\\;\sf{\Longrightarrow\;\;1\;+\;\bf{4\:\bigg(\dfrac{ab}{(a\;-\;b)^{2}}\bigg)}}

\\\;\sf{\Longrightarrow\;\;1\;+\;\bf{\bigg(4\:\times\:\dfrac{ab}{(a\;-\;b)^{2}}\bigg)}}

\\\;\sf{\Longrightarrow\;\;1\;+\;\bf{\bigg(4\:\times\:\dfrac{ab}{(a\;-\;b)^{2}}\bigg)}}

\\\;\sf{\Longrightarrow\;\;1\;+\;\bf{\bigg(\dfrac{4ab}{(a\;-\;b)^{2}}\bigg)}}

\\\;\sf{\Longrightarrow\;\;1\;+\;\bf{\dfrac{4ab}{(a\;-\;b)^{2}}}}

\\\;\bf{\Longrightarrow\;\;\dfrac{1(a\;-\;b)^{2}\;+\;4ab}{(a\;-\;b)^{2}}}

\\\;\bf{\Longrightarrow\;\;\dfrac{(a^{2}\;+\;b^{2}\;-\;2ab)\;+\;4ab}{(a\;-\;b)^{2}}}

\\\;\bf{\Longrightarrow\;\;\dfrac{a^{2}\;+\;b^{2}\;-\;2ab\;+\;4ab}{(a\;-\;b)^{2}}}

\\\;\bf{\Longrightarrow\;\;\dfrac{a^{2}\;+\;b^{2}\;+\;2ab}{(a\;-\;b)^{2}}}

This forms the identity of (a + b)² .

\;\bf{\Longrightarrow\;\;\dfrac{(a\;+\;b)^{2}}{(a\;-\;b)^{2}}}

\\\;\bf{\purple{\Longrightarrow\;\;\bigg(\dfrac{(a\;+\;b)}{(a\;-\;b)}\bigg)^{2}}}

\\\;\underline{\boxed{\tt{Hence,\;\;required\;\;answer\;=\;\bf{\purple{\bigg(\dfrac{(a\;+\;b)}{(a\;-\;b)}\bigg)^{2}}}}}}

______________________________________________

More to know :-

\\\;\sf{\leadsto\;\;(a\;-\;b)^{2}\;=\;a^{2}\;+\;b^{2}\;-\;2ab}

\\\;\sf{\leadsto\;\;a^{2}\;-\;b^{2}\;=\;(a\;+\;b)(a\;-\;b)}

\\\;\sf{\leadsto\;\;(x\;+\;a)(x\;+\;b)\;=\;x^{2}\;+\;(a\;+\;b)x\;+\;ab}

\\\;\sf{\leadsto\;\;(a\;+\;b)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;2ab}

\\\;\sf{\leadsto\;\;(a\;+\;b\;+\;c)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;c^{2}\;+\;2ab\;+\;2bc\;+\;2ac}

Similar questions