Math, asked by aryan021212, 19 days ago


 \sf \: If \alpha  \: and \:  \beta  \: are \: roots \: of \:  {x}^{2} + x + 1 \\

then form an equation whose roots are

 { \alpha }^{14}  +  { \beta }^{11}  \: and \:  { \alpha }^{11}  +  { \beta }^{14}  \\

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm \:  {x}^{2} + x + 1 = 0

Let's first evaluate the roots of the equation using Quadratic formula.

So, By using quadratic formula, we have

\boxed{\sf{  \: x \:  =  \:  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a} \: }} \\

So, here

\rm \: a = 1

\rm \: b = 1

\rm \: c = 1

So, on substituting the values, we get

\rm \: x \:  =  \: \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2}  - 4 \times 1 \times 1} }{2 \times 1}

\rm \: x \:  =  \: \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2}

\rm \: x \:  =  \: \dfrac{ - 1 \:  \pm \:  \sqrt{-3} }{2}

\rm \: x \:  =  \: \dfrac{ - 1 \:  \pm \: i \:  \sqrt{3} }{2}

\rm \: x \:  =  \: \dfrac{ - 1 \:  +  \: i \:  \sqrt{3} }{2} \:  \: or \:  \:  \: \dfrac{ - 1 \:  -  \: i \:  \sqrt{3} }{2}

We know,

\rm \:  \omega \:  =  \:  \: \dfrac{ - 1 \:  +  \: i \:  \sqrt{3} }{2}

and

\rm \:  {\omega }^{2}  =  \: \dfrac{ - 1 \:   -  \: i \:  \sqrt{3} }{2}

So, Roots of the given quadratic equation are

\rm \:  \alpha  = \omega

and

\rm \:  \beta  =  {\omega }^{2}

Now, Consider,

\rm \:  { \alpha }^{14} +  { \beta }^{11}

\rm \:  =  \:  {\omega }^{14} +  {( {\omega }^{2}) }^{11}

\rm \:  =  \:  {\omega }^{2} +  {\omega }^{22} \:  \:  \:  \:  \:  \:  \:  \{ \because \:  {\omega }^{3} = 1 \}

\rm \:  =  \:  {\omega }^{2} +  \omega  \:  \:  \:  \:  \:  \:  \:  \{ \because \:  {\omega }^{3} = 1 \}

\rm \:  =  \:   -  \: 1  \:  \:  \:  \:  \:  \:  \:  \{ \because \:  {1 + \omega  + \omega }^{2} = 0 \} \\

Now, Consider

\rm \:  { \alpha }^{11} +  { \beta }^{14}

\rm \:  =  \:  {\omega }^{11} +  {( {\omega }^{2}) }^{14}

\rm \:  =  \:  {\omega }^{2} +  {\omega }^{28} \:  \:  \:  \:  \:  \:  \:  \{ \because \:  {\omega }^{3} = 1 \}

\rm \:  =  \:  {\omega }^{2} +  \omega  \:  \:  \:  \:  \:  \:  \:  \{ \because \:  {\omega }^{3} = 1 \}

\rm \:  =  \:   -  \: 1  \:  \:  \:  \:  \:  \:  \:  \{ \because \:  {1 + \omega  + \omega }^{2} = 0 \} \\

So, it means we have to find a quadratic equation whose roots are - 1 and - 1.

\rm \: Sum \: of \: the \: roots,S =  - 1 + ( - 1) =  - 2 \\

and

\rm \: Product \: of \: the \: roots,P =  - 1  \times  ( - 1) =  1 \\

So, the required Quadratic equation is

\rm \:  {x}^{2} - Sx + P = 0

So, on substituting the values, we get

\rm \:  {x}^{2}  + 2x + 1 = 0

\rm\implies \: {(x + 1)}^{2} = 0 \: is \: required \: quadratic \: equation. \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION:-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions