Then find,
Hint :
Answers
ANSWER:
= 0
GIVEN:
TO FIND:
= ??
FORMULAE:
cos(x - y) = cos x cos y + sin x sin y
A² + B² + C² + 2AB + 2BC +2CA = (A + B + C)²
sin² A + cos ² B = 1
EXPLANATION:
EXPAND
2 (cos x cos y + sin x sin y + cos y cos z + sin y sin z + cos x cos z + sin x sin z) = -3
3 + 2 (cos x cos y + cos y cos z + cos x cos z) + 2(sin x sin y + sin y sin z + sin x sin z) = 0
(sin² x + cos² y) + (sin² y + cos² z) + (sin² x + cos² z) + 2 (cos x cos y + cos y cos z + cos x cos z) + 2(sin x sin y + sin y sin z + sin x sin z) = 0
(sin² x + sin² y + sin² z) + 2(sin x sin y + sin y sin z + sin x sin z) + (cos² x + cos² y + cos² z) + 2 (cos x cos y + cos y cos z + cos x cos z) = 0
(sin x + sin y + sin z)² + (cos x + cos y + cos z)² = 0
(sin x + sin y + sin z)² = (cos x + cos y + cos z)² = 0
sin x + sin y + sin z = cos x + cos y + cos z = 0
HENCE = 0
ADDITIONAL INFORMATION:
(sin x + sin y + sin z)² = (cos x + cos y + cos z)² = 0.
THIS IS BECAUSE WHEN TWO SQUARE TERMS ARE ADDED THEIR SUM ALWAYS GIVES A POSITIVE NUMBER. WE NEEDED ZERO AND THE ONLY POSSIBILITY IS THE BOTH TERMS SHOULD BE ZERO.
Answer:
2∑cosxcosy+2∑sinxsiny+3=0
2∑cosxcosy+2∑sinxsiny+1+1+1=0
2∑cosxcosy+2∑sinxsiny+sin
2
x+cos
2
x+sin
2
y+cos
2
y+sin
2
z+cos
2
z=0
[cos
2
x+cos
2
y+cos
2
z+2∑cosxcosy]+[sin
2
x+sin
2
y+sin
2
z+2∑sinxsiny]=0
(cosx+cosy+cosz)
2
+(sinx+siny+sinz)
2
=0
⇒cosx+cosy+cosz=0=sinx+siny+sinz
Hence, option 'D' is correct.
Was this answer helpful?