Math, asked by ritaarjun335, 7 hours ago


 \sf{if \quad  {a}^{p} =  {b}^{q} =  {c}^{r} = abc   } \\   \bf{then} \:  \:  \:    \green{\boxed{ \bf{ \orange{pqr}}} }=
quality answers needed hoping for great answers no copying from internet​

Answers

Answered by Brainlypieoker
24

 \huge{\red{\bf{answer}}}

we have a^p = a^q = c^r = abc, so

  {a}^{p}  = abc \\  \\ a = (abc)\frac{1}{p}  \:  \:  \:  \:  \:  \:  \: .1 \\  \\  \\  {a}^{q}  = abc \\  \\ b  = (abc)\frac{1}{q}  \:  \:  \:  \:  \: .2 \\  \\ and \\  \\  {c}^{r}  = abc \\  \\  {c}^{r} =(abc) \frac{1}{r}\:  \:  \:  \:  \: .3

Now we multiple equation 1 , 2 and 3 and get;

abc = (abc) \frac{1}{p}  +  \frac{1}{q}  +  \frac{1}{c}

( As we know (a^m) (a^n) = (a^m+n))

Be comparing both we side get;

 \frac{1}{p}   +  \frac{1}{q}  +  \frac{1}{r}   = 1

 =  \frac{qr + pr + pq}{pqr}  = 1

answer : pqr = qr + pr + pq

Answered by Anonymous
22

\underline{\underline{\bf{Given-}}}

 \sf{if \quad {a}^{p} = {b}^{q} = {c}^{r} = abc }

\underline{\underline{\bf{To\:Find-}}}

 \sf{Value  \: of  \: PQR }

\underline{\underline{\bf{Solution-}}}

 \sf{a^p = abc}

\sf a = (abc)^ {\frac{1}{p}} \_ \:  \_  \: \_  \: \_  \: \_ (1)

 \sf \quad \quad \quad \quad \quad \quad \: (since  \: after \:  transfering  \: we \:  will  \: take \:  the  \: pth  \: root )

 \tt{Similarly-}

 \sf{b^q = abc}

 \sf{b = (abc)^{\frac{1}{q}}\_  \: \_  \: \_  \: \_  \: \_  \: (2)}

 \tt{and}

 \sf{c^r = abc}

 \sf{c = (abc)^{\frac{1}{r}}\_  \: \_ \:  \_  \: \_ \:  \_  \: (3)}

 \underline{ \sf{Multiplying  \: eq. (1),(2) and (3)}}

 \sf{abc = (abc)^{\frac{1}{p}}.(abc)^{\frac{1}{q}}.(abc)^{\frac{1}{r}}}

 \sf{abc = (abc)^{\frac{1}{p} +\frac{1}{q}+\frac{1}{r}}}

 \sf \quad \quad \quad \quad \quad \quad \: (a^m \times a^n = a^{m+n} )

 \underline{ \sf{Comparing \:  powers \:  of  \: both \:  sides-}}

 \sf1 = \dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{r}

 \sf{1 = \dfrac{qr+pr+pq}{pqr} }

\boxed{\bf{pqr = qr+pr+pq}}

Similar questions