Math, asked by Anonymous, 9 months ago

\sf{If \  sin\theta+sin^{2}\theta+sin^{3}\theta=1,}
\sf{then \ cos^{6}\theta-4cos^{4}\theta+8cos^{2}\theta=.....}

Answers

Answered by amansharma264
49

 \bf \to \:  \green{{ \underline{given \div }}}

 \rm \to \:  \sin( \theta) \:  +  \sin {}^{2} ( \theta)  +  \sin {}^{3} ( \theta)   = 1

 \bf \to \:  \orange{{ \underline{to \: find \div }}}

 \cos  {}^{6} ( \theta)  - 4 \cos {}^{4} ( \theta)  + 8 \cos {}^{2} ( \theta)  =

 \bf \to \:  \blue{{ \underline{explanation \div }}}

 \rm \to \:  \sin( \theta)  + \sin {}^{2} ( \theta)  +  \sin {}^{3} ( \theta)  = 1 \\  \\  \rm \to \:  \sin( \theta)  +  \sin {}^{3} ( \theta)  = 1 -  \sin {}^{2} ( \theta)  \\  \\  \rm \to \:  \sin( \theta) (1 \:  +  \sin {}^{2} ( \theta) ) =  \cos {}^{2} ( \theta) \\  \\  \rm \to \:  \sin( \theta) (1 + 1  -  \cos {}^{2} ( \theta) ) =  \cos {}^{2} ( \theta)  \\  \\  \rm \to \:  \sin( \theta) (2 -  \cos {}^{2} ( \theta) ) =  \cos {}^{2} ( \theta)  \\  \\  \rm \to \:  \: squaring \: on \: both \: sides \\  \\  \rm \to \:  \sin {}^{2} ( \theta) (2 -  \cos {}^{2} ( \theta)) {}^{2} =  \cos  {}^{2} ( \theta) {}^{2} \\  \\  \rm \to \: (1 -  \cos {}^{2} ( \theta) )(4 \:  +  \:  \cos  {}^{4} ( \theta) - 4 \cos {}^{2} ( \theta)  ) =  \cos {}^{4} ( \theta) \\  \\  \rm \to \: 4  \:  +  \:  \cos {}^{4} ( \theta)  - 4 \cos {}^{2} ( \theta)  - 4 \cos {}^{2} ( \theta)  -  \cos {}^{6} ( \theta)  +  \: 4 \cos {}^{4} ( \theta)   =  \cos {}^{4} ( \theta)   \\  \\  \rm \to \: 4  \:   -  \: 8 \cos {}^{2} ( \theta)  -  \:  \cos {}^{6} ( \theta) +  \: 4 \cos {}^{4} ( \theta)  = 0 \\  \\  \rm \to \: 4 =  \cos {}^{6} ( \theta)  - 4 \cos {}^{4} ( \theta)  + 8 \cos {}^{2} ( \theta)


amitkumar44481: Great :-)
Answered by Anonymous
48

Question

 \rm \: if \:  \:  \sin \theta +  \sin {}^{2}  \theta +  \sin {}^{3} \theta  = 1

 \rm \:  then \: find \: the \: value \: of \\  \rm \cos {}^{6} \theta  - 4 \cos {}^{4} \theta  + 8 \cos {}^{2}  \theta

Solution:-

Take

 \rm \:  \:  \:  \sin( \theta)  +  \sin {}^{2} ( \theta)  +  \sin {}^{3} ( \theta)  = 1

 \rm \:  \:  \:  \sin( \theta)  +  \sin {}^{3} ( \theta)  = 1 -  \sin {}^{2}  \theta

Use this identity

 \rm \: 1 -  \sin {}^{2}  \theta=  \cos {}^{2}  \theta

We get

 \rm \:  \:  \:  \sin \theta  +  \sin {}^{3} \theta  =  \cos {}^{2} \theta

 \rm \:  \sin\theta(1 +  \sin {}^{2} \theta ) =  \cos {}^{2}  \theta

Squaring on both side

 \rm \:  \sin {}^{2} (1 +  \sin {}^{2} \theta)  {}^{2}  =  \cos {}^{4}  \theta

 \rm(1 -  \cos {}^{2}  \theta )(1 + 1 -  \cos {}^{2} \theta)  {}^{2} =  \cos {}^{2} ( \theta)

 \rm \: (1 -  \cos {}^{2}  \theta )(2 -  \cos {}^{2} \theta ) {}^{2}  =  \cos {}^{4} \theta

Use this identity

 \rm(a - b) { }^{2}  =  { a}^{2}  + b {}^{2}   - 2ab

we get

 \rm(1 -  \cos {}^{2}  \theta)(4 +  \cos {}^{4}  \theta - 4 \cos {}^{2} \theta)  =  \cos {}^{4}  \theta

Now multiply

 \rm4 +  \cos {}^{4} \theta - 4 \cos {}^{2}  \theta  - 4 \cos {}^{2}  \theta  \\  -  \cos {}^{6}  \theta+ 4 \cos {}^{4}  \theta  =  \cos {}^{4} \theta

we get

 \rm \:  -  \cos {}^{6} \theta+ 4 \cos {}^{4}  \theta - 8 \cos {}^{2}  \theta  + 4 = 0

 \rm \ \cos {}^{6}  \theta- 4 \cos {}^{4} \theta + 8 \cos {}^{2}  \theta = 4

Answer is 4

Similar questions