Math, asked by Anonymous, 7 hours ago

\sf If \sqrt{3}Sin \theta - Cos \theta = 0 \ and \ 0^{\circ} \  \textless \  \theta \  \textless \  90^{\circ}, \ find \ the \ value \ of \ \theta.

Answers

Answered by Swarup1998
4

Given:

\sqrt{3}\:sin\theta-cos\theta=0,\:0^{\circ}<\theta<90^{\circ}

To find: the value of \theta

Step-by-step explanation:

Given, \sqrt{3}\:sin\theta-cos\theta=0

\Rightarrow \sqrt{3}\:sin\theta=cos\theta

\Rightarrow \dfrac{sin\theta}{cos\theta}=\dfrac{1}{\sqrt{3}}

\Rightarrow tan\theta=tan30^{\circ}

\Rightarrow \theta=30^{\circ}

Answer: the value of \theta is 30^{\circ}

Note:

The value of \theta can be found using one of sin(A-B) or cos(A+B) rule. You just need to take \dfrac{\sqrt{3}}{2}=cos30^{\circ} or \dfrac{1}{2}=cos60^{\circ}.

Similar questions