Math, asked by SharmaShivam, 11 months ago

\sf{If\:tan\:\dfrac{\theta}{2} = \sqrt{\dfrac{a-b}{a+b} } \:tan\dfrac{\varnothing}{2} \:,\:prove\:that \\\ cos\:\theta=\dfrac{a\:cos\:\varnothing+b}{a+b\:cos\:\varnothing}}

Answers

Answered by Anonymous
59

AnswEr :

Given that,

 \sf \:   tan( \dfrac{ \theta}{2} )  =  \sqrt{ \dfrac{a - b}{a + b} }  tan( \dfrac{ \phi}{2} )

To Prove :

 \sf \: cos \:  \theta =  \dfrac{acos  \: \phi + b}{a + bcos  \: \phi}

We Know that,

 \sf \: cos2x =  \dfrac{1 - tan {}^{2}x }{1 + tan {}^{2}x }

Similarly,

\longrightarrow \sf cos \ \theta = \dfrac{1 - tan^2 \frac{\theta}{2}}{1 + tan^2 \frac{\theta}{2}}

Then,

 \sf \: cos \ \theta =  \dfrac{1  - ( \sqrt{ \dfrac{a - b}{a + b} } \: tan  \frac{ \phi}{2}  ) {}^{2} }{1 + ( \sqrt{ \dfrac{a - b}{a + b} } \: tan \frac{ \phi}{2}) {}^{2}   }  \\  \\  \\  \longrightarrow \:  \sf \: cos \:  \theta =    \frac{1 -  \bigg( \dfrac{a - b}{a + b} \times  \dfrac{ {sin}^{2} \frac{ \phi}{2}  }{ {cos}^{2} \frac{ \phi}{2}  } \bigg)}{1 +  \bigg( \dfrac{a - b}{a + b} \times  \dfrac{ {sin}^{2} \frac{ \phi}{2}  }{ {cos}^{2} \frac{ \phi}{2}  }  \bigg) }  \\  \\  \\  \longrightarrow \:  \sf \: cos \:  \theta =  \dfrac{(a + b) {cos}^{2}  \frac{ \phi}{2} - (a - b) {sin}^{2} \frac{ \phi}{2}   }{(a  +  b) {cos}^{2}  \frac{ \phi}{2}  + (a  -  b) {sin}^{2}  \frac{ \phi}{2}  }  \\  \\   \\  \longrightarrow \:  \sf \: cos \:  \theta =  \dfrac{a(cos {}^{2} \frac{ \phi}{2} -  {sin}^{2} \frac{  \phi}{2}) + b(cos {}^{2}   \frac{ \phi}{2}  +  {sin}^{2} \frac{ \phi}{2} )    }{a(cos {}^{2}  \frac{ \phi}{2} +  {sin}^{2}  \frac{ \phi}{2}  ) + b(cos {}^{2}  \frac{ \phi}{2}  -  {sin}^{2}    \frac{ \phi}{2} ) }  \\  \\  \\   \longrightarrow \:  \sf \: cos \:  \theta =  \frac{acos  \: \phi + b}{a + bcos \:  \phi}

Hence ProveD

Identities Used :

  • cos²∅ - sin²∅ = cos2∅

  • sin²∅ + cos²∅ = 1

Anonymous: Perfect
Anonymous: Thank You
Answered by MarshmellowGirl
34

 \large \underline{ \blue{ \boxed{ \bf \green{Required \: Answer}}}}

\sf{If\:tan\:\dfrac{\theta}{2} = \sqrt{\dfrac{a-b}{a+b} } \:tan\dfrac{\varnothing}{2} \:,\:prove\:that \\\ cos\:\theta=\dfrac{a\:cos\:\varnothing+b}{a+b\:cos\:\varnothing}}

Attachments:
Similar questions