Answers
||✪✪ GIVEN ✪✪||
tanx - cotx = (119/60) where x is between 0° and 90°..
|| ★★ TO FIND ★★ ||
- (sinx + cosx) = ?
|| ✰✰ ANSWER ❶✰✰ ||
Putting cotx = (1/tanx) we get,
⇒ tanx - (1/tanx) = (119/60)
Taking LCM and cross - Multiply now,
⇒ 60(Tan²x - 1) = 119tanx
⇒ 60tan²x - 119tanx - 60 = 0
Splitting The Middle Term now, we get ,
➾ 60tan²x - 144tanx + 25tanx - 60 = 0
➾ 12tanx(5tanx - 12) + 5(5tanx - 12) = 0
➾ (5tanx - 12)(12tanx + 5) = 0
Putting both Equal to Zero now, we get,
➾ tanx = (12/5) or, (-5/12) .
Since 0° < x < 90°.
➾ tanx = (12/5)
___________________________
Now, we know that tanA = (Perpendicular / Base)
So,
⟼ tanx = (12/5) = p/b
we get, p = 12 , b = 5 .
Using Pythagoras Theoram Now, we get:-
➺ h² = p² + b²
➺ h² = (12)² + (5)²
➺ h² = 144 + 25
➺ h² = 169
➺ h = 13
So,
☞ sinx = (Perpendicular /Hypotenuse) = (12/13)
☞ cosx = (Base / Hypotenuse) = (5/13)
___________________________
Putting Both Values Now, we get :-
☛ sinx + cosx
☛ (12/13) + (5/13)
☛ (17/13) (Ans.)
___________________________
|| ✰✰ ANSWER ❷✰✰ ||
➼ (tanx - cotx) = 119/60
Putting tanx = (sinx/cosx) and cotx (cosx/sinx) we get,
➼ (sinx/cosx) - (cosx/sinx) = 119/60
Taking LCM now,
➼(sin²x - cos²x) /(cosxsinx) = 119/60
Taking (-1) Common From Numerator now,
➼ (-1)(cos²x - sin²x) / (cosxsinx) = 119/60
Putting (cos²A - sin²A) = cos2A in Numerator now,
➼ (-cos2x) /(cosxsinx) = 119/60
Multiply and divide by 2 in Numerator and denominator now,
➼ 2(-cos2x) / (2cosxsinx) = 119/60
Putting 2sinA*cosA = sin2A in Denominator now,
➼ (-cos2x)/(sin2x) = 119/120
➼ cot2x = (- 119/120)
➼ Tan2x = (- 120/119)
⟪As, 119, 120 and 169 are Pythagoras Triplets Now.⟫
So,
➼ sin2x = 120/169
Hence,
☛ Ans = √[1 + (120/169)] = (17/13).
______________________________
→ cotx = (1/tanx)
So,
→tanx - (1/tanx) = (119/60)
•Taking LCM and cross - Multiply now,
»60(Tan²x - 1) = 119tanx
» 60tan²x - 119tanx - 60 = 0
•Splitting The Middle Term now, we get ,
→ 60tan²x - 144tanx + 25tanx - 60 = 0
→ 12tanx(5tanx - 12) + 5(5tanx - 12) = 0
→ (5tanx - 12)(12tanx + 5) = 0
•Putting both Equal to Zero ;
→ tanx = (12/5) or, (-5/12) .
• 0° < x < 90°.
→ tanx = (12/5)
→ tanA = (Perpendicular / Base)
tanx = (12/5) = p/b
, p = 12 , b = 5 .
•Using Pythagoras Theorem:—
»h² = p² + b²
» h² = (12)² + (5)²
» h² = 144 + 25
» h² = 169
»h = 13
Now,
sinx = (Perpendicular /Hypotenuse) =
(12/13)
cosx = (Base / Hypotenuse) =
(5/13)
•Putting the above values:-
⟩ sinx + cosx
⟩(12/13) + (5/13)
•°• 17/13