Math, asked by Anonymous, 1 day ago

 \sf If \: the \: equation \:4x^3+20x^2+23x+6=0
\sf \: have \: two \: of \: the \: roots \: \alpha \: \sf and \: \beta \:equal\: ,then
 \sf \: \boxed{\sf\red{\gamma + { |\frac{a}{b}| }}}  \sf \: will \: be -

\bf Note- Consider,\: \gamma\: as \:third \: root

Answers

Answered by 039harshithav
0

Answer:

4x

3

+20x

2

−23x+6=0

Let the roots be a,a,b

∑x=a+a+b=− 420 =−5

2a+b=−5

⇒b=−5−2a....(i)

∑xy=a(a)+a(b)+b(a)= 4−23 a 2+2ab= 4−23

substituting b from (i)

4a 2 +8ab+23=0

4a 2 +8a(−5−2a)+23=0

4a 2 −40a−16a 2 +23=0

12a 2 +40a−23=0

12a 2 −6a+46a−23=0

⇒a= 21 ,− 623

substituting a in (i)

⇒b=−6,− 38

∑xyz=a2 b=− 46=− 23

Product of roots do not satisfy a=− 38

So the roots of the equation are

21 , 21,−6

Similar questions