Math, asked by Deku12, 2 months ago

 \sf{If}{ \tt{ \: \dfrac{ {x}^{2} - yz }{a} = \dfrac{ {y}^{2} - zx}{b} = \dfrac{ {z}^{2} - xy }{c} \: \cancel{ = } \: 0}}
 \\ \sf{show \: that - } \tt{(a + b + c)(x + y + z) = ax + by + cz}
 \\ \red{ \sf{ \rightarrow{no \: spam}}}

Answers

Answered by assingh
31

Topic :-

\mathtt{Algebra}

Given :-

\mathtt{\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\neq 0}

To Prove :-

\mathtt{(a+b+c)(x+y+z)=ax+by+cz}

Solution :-

\mathtt{Let\:us\:assume\:that\:given\:ratios\:equals\:to\:'k'.}

\mathtt{k\neq 0}

\mathtt{\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}=k}

We may write,

\mathtt{\dfrac{x^2-yz}{a}=k}

\mathtt{\dfrac{x^2-yz}{k}=a}

\mathtt{\dfrac{y^2-zx}{b}=k}

\mathtt{\dfrac{y^2-zx}{k}=b}

\mathtt{\dfrac{z^2-xy}{c}=k}

\mathtt{\dfrac{z^2-xy}{k}=c}

Solving LHS,

\mathtt{(a+b+c)(x+y+z)}

Substitute values of a, b and c,

\mathtt{\left(\dfrac{x^2-yz}{k}+\dfrac{y^2-zx}{k}+\dfrac{z^2-xy}{k}\right)(x+y+z)}

\mathtt{\left( \dfrac{x^2-yz+y^2-zx+z^2-xy}{k}\right )(x+y+z)}

\mathtt{\dfrac{(x^2+y^2+z^2-xy-yz-zx)(x+y+z)}{k}}

\mathtt{\dfrac{x^3+y^3+z^3-3xyz}{k}}

\mathtt{(\because (p+q+r)(p^2+q^2+r^2-pq-qr-rp)=p^3+q^3+r^3-3pqr)}

Solving RHS,

\mathtt{ax+by+cz}

Substitute values of a, b and c,

\mathtt{\left(\dfrac{x^2-yz}{k}\right)x+\left(\dfrac{y^2-zx}{k}\right)y+\left(\dfrac{z^2-xy}{k}\right)z}

\mathtt{\dfrac{x^3-xyz}{k}+\dfrac{y^3-xyz}{k}+\dfrac{z^3-xyz}{k}}

\mathtt{\dfrac{x^3-xyz+y^3-xyz+z^3-xyz}{k}}

\mathtt{\dfrac{x^3+y^3+z^3-3xyz}{k}}

We observe that LHS = RHS !!

Hence, Proved !!

Answered by OtakuSama
66

\large{\dag{\underline{\underline{\sf{\pmb{Question: - }}}}}}

 \sf{If \: \dfrac{ {x}^{2} - yz }{a} = \dfrac{ {y}^{2} - zx}{b} = \dfrac{ {z}^{2} - xy }{c} \: \cancel{ = } \: 0}

\sf{show \: that : - (a + b + c)(x + y + z) = ax + by + cz} \\  \\

\large{\dag{\underline{\underline{\sf{\pmb{Required \: Answer: - }}}}}}

 \\ \dag{\underline{\underline{\sf{\pmb{Given: - }}}}}

 \\  \sf{\rightarrow{ \: \dfrac{ {x}^{2} - yz }{a} = \dfrac{ {y}^{2} - zx}{b} = \dfrac{ {z}^{2} - xy }{c} \: \cancel{ = } \: 0}} \\

 \\ \dag{\underline{\underline{\sf{\pmb{To \: Do: - }}}}}

 \\ \sf{\rightarrow{Show \: that : - (a + b + c)(x + y + z) = ax + by + cz}} \\

\\\dag{\underline{\underline{\sf{\pmb{Solution: - }}}}}

Let us assume that :-

\sf{\dfrac{ {x}^{2}  - yz}{a} =  \dfrac{ {y}^{2} - zx }{b}  =  \dfrac{ {z}^{2} - xy }{c}  = \bold{k}}

Therefore,

\sf{\therefore{\dfrac{ {x}^{2}  - yz}{a} = k}}

 \\ \sf{\implies{\blue{ {x}^{2}  - yz = ak -  -  -  -  -  -  -  -  -  -  - (1)}}}

Similarly:-

\sf{\blue{ {y}^{2}  - zx = bk -  -  -  -  -  -  -  -  -  -  - (2)}}

\sf{\blue{ {z}^{2}  - xy = ck-  -  -  -  -  -  -  -  -  -  - (3)}}  \\

Now:-

\sf{\bold{(1) \times x + (2) \times y + (3) \times z \implies}}

 \\ \sf{\bold{( {x}^{2}  - yz)x + ( {y}^{2}  - zx)y + ( {z}^{2}  - xy)z = ak \times x + bk \times y + ck \times z}}

 \\ \sf{\implies{{x}^{3} - xyz +  {y}^{3}  - xyz +  {z}^{3}  - xyz = k(ax + by + cz)}}

 \\ \sf{\implies{{x}^{3} + {y}^{3} + {z}^{3} - 3xyz = k(ax + by + cz)}}

Now, we know that:-

 \\ \underline{\boxed{\pmb{ {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca)}}}\\

So, applying the formula we get:-

 \\ \sf{\implies{(x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2} - xy - yz - zx) = k(ax + by + cz)}}

 \\ \sf{\implies{(x + y + z)(  {x}^{2}  - yz +  {y}^{2} - zx +  {z}^{2}   - xy) = k(ax + by + cz)}}

From equation 1, 2 and 3 , we can write:-

 \\ \sf{\implies{(x + y + z)(  ak + bk + ck)= k(ax + by + cz)}}

 \\ \sf{\implies{k(x + y + z)(a + b + c) = k(ax + by + cz)}}

Removing k from both sides:-

 \\ \sf{\implies{(x + y + z)(a + b + c) = (ax + by + cz)}}

 \\ \sf{\therefore{\red{(x + y + z)(a + b + c) = (ax + by + cz)}}} \\

Hence, showed!

Similar questions