Math, asked by Anonymous, 4 days ago

\sf \: if \: x = { \cos }^{3} \theta.y = { \sin }^{1} \theta \: then \: \displaystyle \sqrt{1 + \bigg(\sf\frac{dy}{dx} \bigg) } {}^{2}

Answers

Answered by mathdude500
31

Appropriate Question :-

\rm \: If \: x =  {cos}^{3}\theta  \: and \: y =  {sin}^{3}\theta , \: then \:  \sqrt{1 +\bigg(   {\dfrac{dy}{dx}}\bigg)^{2}  }  \\

\large\underline{\sf{Solution-}}

Given that,

\rm \: x =  {cos}^{3}\theta  \\

So,

\rm \: \dfrac{d}{d\theta }x =  \dfrac{d}{d\theta }{cos}^{3}\theta  \\

We know,

\boxed{\sf{  \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\

So, using this, we get

\rm \: \dfrac{dx}{d\theta } = 3 {cos}^{2}\theta \dfrac{d}{d\theta }cos\theta  \\

We know,

\boxed{\sf{  \:\dfrac{d}{dx}cosx =  - sinx \: }} \\

So, using this result, we get

\rm \: \dfrac{dx}{d\theta } =  {3cos}^{2}\theta ( - sin\theta ) \\

\rm\implies \: \dfrac{dx}{d\theta } =  \:  -   \: {3cos}^{2}\theta \: sin\theta  \\

Again, given that,

\rm \: y =  {sin}^{3}\theta  \\

So,

\rm \: \dfrac{d}{d\theta }y = \dfrac{d}{d\theta } {sin}^{3}\theta  \\

\rm \: \dfrac{dy}{d\theta } =  {3sin}^{2}\theta  \: \dfrac{d}{d\theta }sin\theta  \\

\rm \: \dfrac{dy}{d\theta } =  {3sin}^{2}\theta  \: \cos\theta  \\

So,

\rm\implies \:\dfrac{dy}{d\theta } = 3 {sin}^{2}\theta  \: cos\theta  \\

So,

\rm \: \dfrac{dy}{dx} \\

\rm \: =  \: \dfrac{dy}{d\theta } \div \dfrac{dx}{d\theta } \\

\rm \: =  \: \dfrac{ {3sin}^{2}\theta cos\theta }{ -  {3cos}^{2} \theta sin\theta }  \\

\rm \: =  \:  -  \: tan\theta  \\

So,

\rm\implies \:\dfrac{dy}{dx} =  \:  -  \: tan\theta  \\

Now, Consider

\rm \:  \sqrt{1 +  {\bigg(\dfrac{dy}{dx}\bigg) }^{2} }  \\

\rm \: =  \:  \sqrt{1 +  {( - tan\theta )}^{2} }  \\

\rm \: =  \:  \sqrt{1 +  {tan}^{2} \theta }  \\

\rm \: =  \:  \sqrt{ {sec}^{2} \theta }  \\

\rm \: =  \: sec\theta  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \:  \sqrt{1 +  {\bigg(\dfrac{dy}{dx}\bigg) }^{2} }  \:  =  \: sec\theta  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by maheshtalpada412
11

Step-by-step explanation: \color{red} \tt\dfrac{d y}{d x}=\cfrac{\cfrac{d y}{d \theta}}{\cfrac{d x}{d \theta}}\\ \\ \color{navy}\tt=\cfrac{\cfrac{d}{d \theta}\left( \sin ^{3} \theta\right)}{\cfrac{d}{d \theta}\left(\cos ^{3} \theta\right)}\\ \\ \color{green}\tt=\cfrac{3 \sin ^{2} \theta \cos \theta}{-3 \cos ^{2} \theta \sin \theta}\\ \\  \color{orange}\tt=-\tan \theta  \color{blue}\tt\sqrt{\left[1+\left(\dfrac{d y}{d x}\right)\right]^2}=\sqrt{1+(-\tan \theta)^{2}}=\sqrt{1+\tan ^{2} \theta}=|\sec \theta| .

Similar questions