Math, asked by IIJustAWeebII, 1 month ago


  \\  \sf{if \: x =  \dfrac{  \sqrt{2a + 3b}  +  \sqrt{2a - 3b} }{ \sqrt{2a + 3b} -  \sqrt{2a - 3b}}  }  \: then \: prove \: that  \ratio-
 \\  \sf{ \implies{3b {x}^{2}  - 4ax + 3b = 0}}

◆ No spam!!! (•ˋ _ ˊ•)​

Answers

Answered by OtakuSama
84

 \\  \huge{ \underline{ \underline{ \sf{ \pmb{Question}}}}}

 \\ \sf{If \: x = \dfrac{ \sqrt{2a + 3b} + \sqrt{2a - 3b} }{ \sqrt{2a + 3b} - \sqrt{2a - 3b}} } \: then \: prove \: that \ratio-

 \\ \sf{ \implies{3b {x}^{2} - 4ax + 3b = 0}}

 \\  \huge{ \underline{ \underline{ \sf{ \pmb{Required \: Answer}}}}}

 \\  \large{ \underline{ \underline{ \sf{ \pmb{Given}}}}}

  •  \\ \sf{x = \dfrac{ \sqrt{2a + 3b} + \sqrt{2a - 3b} }{ \sqrt{2a + 3b} - \sqrt{2a - 3b}} }

 \\  \large{ \underline{ \underline{ \sf{ \pmb{To \: Do}}}}}

  •  \\ \sf{Prove \: that \ratio-3b {x}^{2} - 4ax + 3b = 0}

  \\  \large{ \underline{ \underline{ \sf{ \pmb{Solution}}}}}

 \\ \sf{ \bold{{x = \dfrac{ \sqrt{2a + 3b} + \sqrt{2a - 3b} }{ \sqrt{2a + 3b} - \sqrt{2a - 3b}}}}}

By Componendo-Divinendo :-

 \\  \sf{  \implies{\dfrac{x + 1}{x - 1}  =  \dfrac{ \sqrt{2a + 3b}  +   \cancel{\sqrt{2a  -  3b}}  +  \sqrt{2a + 3b}  -  \cancel{ \sqrt{2a - 3b}} }{ \cancel{\sqrt{2a + 3b}}  +  \sqrt{2a  -  3b}   -  \cancel{ \sqrt{2a + 3b}}   +  \sqrt{2a - 3b}} }}

 \\  \sf{ \implies{ \dfrac{x + 1}{x - 1}  =  \dfrac{2( \sqrt{2a + 3b} )}{2( \sqrt{2a - 3b} )}}}

 \\  \sf{ \implies{ \dfrac{x + 1}{x - 1}  =  \dfrac{ \sqrt{2a + 3b} }{\sqrt{2a - 3b} }}}

Squaring in both sides:-

 \\  \sf{ \implies{  \dfrac{(x + 1) {}^{2} }{(x - 1) {}^{2} }  =  \dfrac{ (\sqrt{2a + 3b} ) {}^{2} }{(\sqrt{2a - 3b}) {}^{2}  }}}

Applying formula of (a+b)^2 , (a-b)^2 and removing the roots:-

 \\  \sf{ \implies{  \dfrac{ {x}^{2} + 2x + 1 }{ {x}^{2}  - 2x + 1}  =  \dfrac{2a + 3b}{2a - 3b} }}

Again Componendo-Divinendo :-

 \\  \sf{ \implies{  \dfrac{ {x}^{2} + \cancel{ 2x} + 1 +  {x}^{2}  - \cancel{ 2x} + 1 }{{x}^{2} +  2x+  \cancel{1}  -   {x}^{2}   +   2x  -   \cancel{1}} =  \dfrac{2a +  \cancel{3b} + 2a - \cancel{ 3b}}{ \cancel{2a} +  3b - \cancel{  2a}  +  3b}}}

 \\  \sf{ \implies{ \dfrac{2 {x}^{2} + 2 }{4x}  =  \dfrac{4a}{6b} }}

 \\  \sf{ \implies{ \dfrac{2( {x}^{2} + 1) }{2 \times 2x}  =  \dfrac{2 \times 2a}{2 \times 3b}}}

 \\  \sf{ \implies{ \dfrac{ {x}^{2}  + 1}{2x}  =  \dfrac{2a}{3b}}}

 \\  \sf{ \implies{3b {x}^{2}  + 3b = 4ax}}

 \\  \sf{ \implies{3b {x}^{2}  + 3b - 4ax = 0}}

 \\  \sf{ \implies{ \red{ \bold{3b {x}^{2}  - 4ax + 3b = 0}}}}

Hence Proved!!

Answered by rohan15086
3

As verbs the difference between savor and savour

is that savor is to possess a particular taste or smell, or a distinctive quality while savour is to possess a particular taste or smell, or a distinctive quality.

Attachments:
Similar questions