Math, asked by SweetLily, 3 months ago


 \sf{if \:  x = exp\bigg[tan^{-1}\bigg(\frac{y-x^{2}}{x^{2}}\bigg)\bigg]  \:  \: Then  \:  \: \frac{dy}{dX} \:  \:  equals }

Options are ::-
 \sf{(a) 2x[1+ tan (log x)]+ x sec²(log x)}
 \sf{(b) x[1+ tan (log x)]+ sec² (log x)}
 \sf{(c) 2x[1 + tan (log x)] +x² sec² (log \:  x)}
 \sf{(d) 2x[1+ tan (log  \: x)]+ sec²(log \: x )}

Answers

Answered by mathdude500
7

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf \: \dfrac{d}{dx} tanx \:  =  {sec}^{2}x}

 \boxed{\bf \: \dfrac{d}{dx}logx = \dfrac{1}{x}}

 \boxed{\bf \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}

 \boxed{\bf \: \dfrac{d}{dx}x = 1}

 \boxed{\bf \:loge = 1}

\boxed{\bf\:\dfrac{d}{dx}u.v = v\dfrac{d}{dx} u \:  +  \: u\dfrac{d}{dx} v}

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\sf{\: x = exp\bigg[tan^{-1}\bigg(\frac{y-x^{2}}{x^{2}}\bigg)\bigg]}

On taking log on both sides, we get

\rm :\longmapsto\:logx =  {tan}^{ - 1}\bigg( \dfrac{y -  {x}^{2} }{ {x}^{2} } \bigg) log(e)

\rm :\longmapsto\:logx =  {tan}^{ - 1}\bigg( \dfrac{y -  {x}^{2} }{ {x}^{2} } \bigg)  \times 1

\rm :\longmapsto\: \tan(logx)  = \dfrac{y -  {x}^{2} }{ {x}^{2} }

\rm :\longmapsto\: {x}^{2} \tan(logx) = y -  {x}^{2}

\rm :\longmapsto\: {x}^{2} \tan(logx) +  {x}^{2}  = y

\rm :\longmapsto\: {x}^{2}( \tan(logx) + 1) = y

\rm :\longmapsto\:y =  {x}^{2}( \tan(logx) + 1)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx} y = \dfrac{d}{dx} ( {x}^{2}( \tan(logx) + 1))

\rm :\longmapsto\:\dfrac{dy}{dx} =  {x}^{2}\dfrac{d}{dx} ( \tan(logx) + 1) +  (\tan(logx) + 1)\dfrac{d}{dx}  {x}^{2}

\rm :\longmapsto\:\dfrac{dy}{dx} =  {x}^{2} {sec}^{2}(logx)\dfrac{d}{dx}logx + ( \tan(logx) + 1)2x

\rm :\longmapsto\:\dfrac{dy}{dx} =  {x}^{2} {sec}^{2}(logx)\dfrac{1}{x} + ( \tan(logx) + 1)2x

\rm :\longmapsto\:\dfrac{dy}{dx} =  {x}{sec}^{2}(logx) + ( \tan(logx) + 1)2x

\bf\implies \:\dfrac{dy}{dx} = 2x \bigg(1 + tan(logx) \bigg) + x {sec}^{2}(logx)

\large{\boxed{\boxed{\bf{Option \:  (a) \:  is  \: correct}}}}

Additional Information :-

\boxed{\bf\:\dfrac{d}{dx}sinx = cosx}

\boxed{\bf\:\dfrac{d}{dx}cosx =  - sinx}

\boxed{\bf\:\dfrac{d}{dx}cotx =  -  {cosec}^{2}x}

\boxed{\bf\:\dfrac{d}{dx}secx = secxtanx}

\boxed{\bf\:\dfrac{d}{dx}cosecx =  - cosecxcotx}

Similar questions