Math, asked by IITGENIUS1234, 1 year ago


\sf{If  \: x,y > 0,  log_{x}(y)  \:   +  \:  log_{y}(x) \:  =  \dfrac{10}{3} \: and \: xy \:  =  \: 144, \: then \:  \frac{x \:  +  \: y}{2} \:  = }

Please Answer This Question !!!


Spammers Be Away !!!


Chapter : Logarithm



Answers

Answered by Anonymous
18

\mathfrak{\underline{\underline{\mathfrak{ \large{Solution : }}}}}

Given,

\mathsf{ \implies log_x \: y \: + \: log_y \: x \: = \: \dfrac{10}{3}} \\ \\ \mathsf{  \implies \: log_x \: y \: + \: \dfrac{1}{log_x \: y } \: = \: \dfrac{10}{3}} \\  \\ </p><p> \mathsf{  \implies \: \dfrac{( log_x \: y)^{2}  \: + \: 1}{log_x \: y } \: = \: \dfrac{10}{3}}

 \sf{Let,} \:  \sf log_x \: y = \: z

 \sf \implies \:  \dfrac{z^{2}  \:  +  \: 1}{z}  \:  =  \:  \dfrac{10}{3}  \\  \\  \sf \implies \: 3 ({z}^{2}  \:  +  \: 1) \:  =  \: 10z \\  \\  \sf \implies \: 3 {z}^{2}  \:  +  \: 3 \:  =  \: 10z \\  \\  \sf \implies3 {z}^{2}  \:  -  \: 10z \:  +  \: 3 \:  =  \: 0 \\  \\  \sf \implies3 {z}^{2}  \:  -  \: 9z \:  -  \: z \:  +  \: 3 \:  =  \: 0 \\  \\  \sf \implies3z(z \:  - 3) \:  -  \: 1(z \:  -  \:  3) \:  =  \: 0 \\  \\  \sf \implies(z \:  -  \: 3)(3z \:  -  \: 1) \:  =  \: 0

By Zero Product Rule :

 \sf \therefore \:  \: z \:  =  \: 3 \: and \:  \dfrac{1}{3}

Case 1:

  \sf \implies  \: z \:  =  \: 3 \\  \\  \sf \implies  \: log_x \: y \:  =  \: 3 \\  \\  \sf \implies {x}^{3}  \:  =  \: y \:  \:  \:  \: .......(1)

According to question :

  \sf\implies xy \:  =  \: 144 \\  \\  \sf \therefore \:  \: y\:  =  \:  \dfrac{144}{x} \:  \:  \:  \:  \:   .......(2)

Put the value of y in (1),

 \sf \implies {x}^{3}  \:  =  \: y \\  \\  \sf \implies  {x}^{3}  \:  =  \:  \dfrac{144}{x}  \\  \\  \sf \implies {x}^{4}  \:  =  \: 144 \\  \\  \sf \implies x \:  =  \sqrt{144}  \\  \\  \sf \therefore \:  \: x \:  =  \:  \sqrt{12}

Put the value of x in (2),

  \sf\implies  y \:  =  \:  \dfrac{144}{x}  \\  \\  \sf \implies y \:  =  \:  \dfrac{144}{ \sqrt{12} }  \\  \\  \sf \therefore \:  \: y \:  =  \: 12 \sqrt{12}

To Find :

 \sf =  \:  \dfrac{x \:  +  \: y}{2}  \\  \\  \sf =  \:  \dfrac{ \sqrt{12}  \:  +  \: 12 \sqrt{12} }{2} \\  \\  \sf =  \:  \dfrac{13 \sqrt{12} }{2}  \\  \\  \sf  =  \:  \dfrac{13 \:  \times  \: 2 \sqrt{3} }{2}  \\  \\  \sf \:  =  \: 13 \sqrt{3}

Case 2:

  \sf \implies  \: z \:  =  \: 3 \\  \\  \sf \implies  \: log_y\: x \:  =  \: 3 \\  \\  \sf \implies {y}^{3}  \:  =  \: x \:  \:  \:  \: .......(1)

According to question :

  \sf\implies xy \:  =  \: 144 \\  \\  \sf \therefore \:  \: y\:  =  \:  \dfrac{144}{x} \:  \:  \:  \:  \:   .......(2)

Put the value of x in (1),

 \sf \implies {y}^{3}  \:  =  \: x\\  \\  \sf \implies  {y}^{3}  \:  =  \:  \dfrac{144}{y}  \\  \\  \sf \implies {y}^{4}  \:  =  \: 144 \\  \\  \sf \implies y\:  =  \sqrt{144}  \\  \\  \sf \therefore \:  \: y \:  =  \:  \sqrt{12}

Put the value of y in (2),

  \sf\implies  y \:  =  \:  \dfrac{144}{x}  \\  \\  \sf \implies  \sqrt{12}  \:  =  \:  \dfrac{144}{ x} \\  \\  \sf  \implies x \:  =  \:  \dfrac{144}{ \sqrt{12} }   \\  \\  \sf \therefore \:  \: x \:  =  \: 12 \sqrt{12}

To Find :

 \sf =  \:  \dfrac{x \:  +  \: y}{2}  \\  \\  \sf =  \:  \dfrac{    12 \sqrt{12}  \:  +  \:  \sqrt{12} }{2} \\  \\  \sf =  \:  \dfrac{13 \sqrt{12} }{2}  \\  \\  \sf  =  \:  \dfrac{13 \:  \times  \: 2 \sqrt{3} }{2}  \\  \\  \sf \:  =  \: 13 \sqrt{3}

Answered by rahman786khalilu
3

hope it helps......................

Attachments:
Similar questions