Answers
Answered by
5
HELLO DEAR,
GIVEN:- f(x) = 2x³ - 15x² + 36x + 1
so, f'(x) = 6x² - 30x + 36
for Maxima/minima , f'(x) = 0
6x² - 30x + 36 = 0
=> x² - 5x + 6 = 0
=> x² - 3x - 2x + 6 = 0
=> x(x - 3) - 2(x - 3) = 0
=> (x - 2)(x - 3) = 0
=> x = 2 , x = 3
and, f''(x) = 12x - 30
f''(2) = 12(2) - 30 = -6 >0
therefore, x = 2 is a point of Maxima
and f''(3) = 12(3) - 30 = 6>0
therefore, x = 3 is a point of minima
hence, maximum value at x = 2 is f(2) = 16 - 60 + 72 + 1 = 29
and
minimum value at x = 3 is f(3) = 54 - 135 + 108 + 1 = 28
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- f(x) = 2x³ - 15x² + 36x + 1
so, f'(x) = 6x² - 30x + 36
for Maxima/minima , f'(x) = 0
6x² - 30x + 36 = 0
=> x² - 5x + 6 = 0
=> x² - 3x - 2x + 6 = 0
=> x(x - 3) - 2(x - 3) = 0
=> (x - 2)(x - 3) = 0
=> x = 2 , x = 3
and, f''(x) = 12x - 30
f''(2) = 12(2) - 30 = -6 >0
therefore, x = 2 is a point of Maxima
and f''(3) = 12(3) - 30 = 6>0
therefore, x = 3 is a point of minima
hence, maximum value at x = 2 is f(2) = 16 - 60 + 72 + 1 = 29
and
minimum value at x = 3 is f(3) = 54 - 135 + 108 + 1 = 28
I HOPE IT'S HELP YOU DEAR,
THANKS
Answered by
0
On differentiating, we get
⇒ y' = 6x^2 - 30x + 36
We need to set the derivative equal to 0 in order to find maximum and minima.
⇒ y' = 0
⇒ 6x^2 - 30x + 36 = 0
⇒ 6(x^2 - 5x + 6) = 0
⇒ x^2 - 5x + 6 = 0
⇒ x^2 - 3x - 2x + 6 = 0
⇒ x(x - 3) - 2(x - 3) = 0
⇒ (x - 2)(x - 3) = 0
⇒ x = 2,3..
⇒ y'' = 12x - 30.
Now,
⇒ 12x - 30
⇒ 12(2) - 30
⇒ -6.
⇒ 12x - 30
⇒ 12(3) - 30
⇒ 36 - 30
⇒ 6.
Hence,
Hope it helps!
Similar questions
Social Sciences,
7 months ago
Chemistry,
7 months ago
History,
1 year ago
Math,
1 year ago
English,
1 year ago