French, asked by Anonymous, 7 months ago

 \sf \large \red{\underline{ Question:-}}\\\\ 5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.
Solve llsdagg[/tex]

Answers

Answered by Anonymous
0

Answer:

 \sf  \large \red{\underline{ Question:-}}\\\\

5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

 \\\\\sf  \large \red{\underline{Given:-}}\\\\

The measures of two adjacent angles of a parallelogram are in the ratio 3:2.

 \\\\\sf  \large \red{\underline{To   \: Find:-}}\\\\

Find the measure of each of the angles of the parallelogram.

 \\\\\sf  \large  \red{\underline{Solution :-  }}\\\\

 \text{ \sf suppose the angles be equal to 3x and 2x.}

 \boxed{ \sf \orange{ we \: have \: ardjacent  \: angles \:  of  \: a  \: parallelogram \:  = 180}}

  \\  \sf \underline{ \green{putting \: all \: values : }}

 \:  \\ \sf \to  \: 3x +  2 x = 180\: \\   \\ \sf \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:5x = 180 \\  \\  \: \sf \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:x \:  =  \frac{180}{5}  \\  \\  \sf \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:x \:  = \cancel{  \frac{180}{5} } \\  \\ \sf \to \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \purple{x = 36}\\\\

 \sf  \to \: 3x  \\ \sf  \to \: 3 \times 36 \\ \sf  \to \red{108 }\\  \\  \\  \sf \to \: 2x \\  \sf  \to \: 2 \times 36 \\ \sf  \to \orange{72} \\

 \sf  \large\underline{ \blue{verification }}  \huge \dag

  \\  \\ \sf \to 3x + 2x = 180 \\  \\  \sf \to \: 3 \times 36 +2 \times 36 = 180 \\   \\  \sf \to \: 108 + 72 = 180 \\  \\  \sf \to \:180 = 180 \\  \\  \large \underline{ \pink{ \sf \: hence \: verified}} \huge \dag

Answered by Anonymous
2

Answer:

let measure of each angles bes 3x and 2x

ATQ

→ 3x +2x =180

→ 5x=180

→ x=180/5

→ x=36

•3×36= 108

•2×36=72

verification

3x +2x = 180

3×36+2×72= 180

108+ 72 = 180

180= 180

verified

Similar questions