Solve the value for x and y =?
(a-b)x+(a+b)y=a²-2ab+b²
(a+b)(x+y)=a²-b²
Please answer in good content
wrong answer will be deleted at the spot.
Answers
- The value of "x" and "y" .
☯︎ First of all solve the first given equation .
☯︎ Secondly, solve the second given equation .
➪ Now, putting the value of "a(x + y)" in the equation (1);
➪ Now, putting the value of "x" in the equation (2);
The value of x is "(a - b)" and the value of y is "0" .
Question :
Solve the value for x and y =?
(a-b)x+ (a+b)y = a²- 2ab + b²
(a+b) (x+y) = a²- b²
Solution :
Given :
⇒ (a-b)x + (a+b)y = a²- 2ab + b² .............. (i)
⇒ (a + b)(x + y) = a² - b²
⇒ (a + b)x + (a + b)y = a² - b².............. (ii)
Now substracting (i) from (ii) :-
⇒ (a + b)x + (a + b)y - (a - b)x - (a + b)y = a² - b² - a² + 2ab - b²
⇒ x(a + b - a + b) = 2ab - 2b²
⇒ x(2b) = 2b(a - b)
⇒ x = 2b(a - b)/2b
⇒ x = a - b
Now putting value of 'x' in equation (i) :-
⇒ (a - b)(a - b) + (a + b)y = a² - 2ab + b²
⇒ (a - b)² + (a + b)y = (a - b)²
⇒ (a + b)y = (a - b)² - (a - b)²
⇒ (a + b)y = 0
⇒ y = 0/(a + b)
⇒ y = 0