Math, asked by mddilshad11ab, 8 months ago

\sf\large\underline\purple{Question:-}
Solve the value for x and y =?
(a-b)x+(a+b)y=a²-2ab+b²
(a+b)(x+y)=a²-b²
Please answer in good content
wrong answer will be deleted at the spot.​

Answers

Answered by rocky200216
79

\bf{\gray{\underbrace{\blue{GIVEN:-}}}}

  1. \bf\red{(a\:-\:b)\:x\:+\:(a\:+\:b)\:y\:=\:a^2\:-\:2ab\:+\:b^2\:}
  2. \bf\red{(a\:+\:b)\:(x\:+\:y)\:=\:a^2\:-\:b^2\:}

\bf{\gray{\underbrace{\blue{TO\:FIND:-}}}}

  • The value of "x" and "y" .

\bf{\gray{\underbrace{\blue{SOLUTION:-}}}}

☯︎ First of all solve the first given equation .

 \pink\checkmark \: (a \:   -   \: b)x \:  +  \: (a \:  +  \: b)y \:  =  \:  {a}^{2}  - 2ab  +  {b}^{2}  \\  \\ :\implies \: ax \:  -  \: bx \: +  \:  ay \:  +  \: by \:  =  \:  {a}^{2}  - 2ab +  {b}^{2}  \\  \\  :\implies \: a(x \:  +  \: y) - \: b(x \:  -  \: y) \:  =  \:  {a^2 - 2ab + b^2} ---- (1)

☯︎ Secondly, solve the second given equation .

 \orange\checkmark \: (a \:  +  \: b) \: (x \:  +  \: y) \:  =  \:  {a}^{2}  -  {b}^{2} ---- (2) \\  \\  :\implies \: a(x \:  +  \: y) \:  +  \: b(x \:  +  \: y) \:  =  \:  {a}^{2}  -  {b}^{2} \\

\bf\green{:\implies\:a\:(x\:+\:y)\:=\:a^2\:-\:b^2\:-\:b(x\:+\:y)\:}

➪ Now, putting the value of "a(x + y)" in the equation (1);

 :\implies \: \Big\{ {a}^{2}  -  {b}^{2}  - b(x \:  +  \: y) \Big\} \: - b(x \: - \: y) \: =  \:  {a}^{2}  - 2ab  +  {b}^{2}  \\  \\  :\implies \:  \cancel{{a}^{2}}  -  {b}^{2}  - bx - \cancel{by} - bx + \cancel{by} \:  =  \: \cancel{{a}^{2}}  - 2ab  +  {b}^{2} \\  \\  :\implies \:  - 2bx \:  =  \:  - 2ab \:  +  \: 2 {b}^{2}  \\  \\  :\implies \:  - \cancel{2b}x \:  =  \: \cancel{2b}( - a \:  +  \: b) \\  \\  :\implies \:  - x \:  =  \:  - a \:  +  \: b \\

\bf\purple{:\implies\:x\:=\:(a\:-\:b)\:}

➪ Now, putting the value of "x" in the equation (2);

 :\implies \: (a \:  +  \: b) \: \Big\{ (a \:  -  \: b) \:  +  \: y \Big\} \:  =  \:  {a}^{2}  -  {b}^{2}  \\  \\  :\implies \: (a \:  -  \:b) \:  +  \: y \:  =  \:  \frac{(a \:  -  \: b) \: \cancel {(a \:  +  \: b)}}{\cancel {(a \:  +  \: b)}}  \\  \\  :\implies \: y \:  =  \: a \:  -  \: b \:  -  \: (a \:  -  \: b) \\  \\  :\implies \: y \:  =  \: \cancel{a} \:  -  \: \cancel{b} \:  -  \: \cancel{a} \:  +  \: \cancel{b} \\

\bf\blue{:\implies\:y\:=\:0\:}

\red\therefore The value of x is "(a - b)" and the value of y is "0" .

Answered by EliteSoul
70

Question :

Solve the value for x and y =?

(a-b)x+ (a+b)y = a²- 2ab + b²

(a+b) (x+y) = a²- b²

Solution :

Given :

⇒ (a-b)x + (a+b)y = a²- 2ab + b² .............. (i)

⇒ (a + b)(x + y) = a² - b²

⇒ (a + b)x + (a + b)y = a² - b².............. (ii)

Now substracting (i) from (ii) :-

⇒ (a + b)x + (a + b)y - (a - b)x - (a + b)y = a² - b² - a² + 2ab - b²

⇒ x(a + b - a + b) = 2ab - 2b²

⇒ x(2b) = 2b(a - b)

⇒ x = 2b(a - b)/2b

x = a - b

Now putting value of 'x' in equation (i) :-

⇒ (a - b)(a - b) + (a + b)y = a² - 2ab + b²

⇒ (a - b)² + (a + b)y = (a - b)²

⇒ (a + b)y = (a - b)² - (a - b)²

⇒ (a + b)y = 0

⇒ y = 0/(a + b)

y = 0

\therefore\underline{\boxed{\bold{Required \ value \ of \ x \ = \ a - b \ }}}

\therefore\underline{\boxed{\bold{Required \ value \ of \ y \ = \ 0 \ }}}

Similar questions