![\sf\large\underline{Question} \sf\large\underline{Question}](https://tex.z-dn.net/?f=%5Csf%5Clarge%5Cunderline%7BQuestion%7D)
Find the minimum value of 5cosA + 12sinA + 12
Answers
Answered by
67
Answer:
Since, −1≤cosθ≤1
⇒−5≤5cosθ≤5
⇒−5+12≤5cosθ+12<5+12
⇒7≤5cosθ+12<17
Hence, minimum value is 7.
Answered by
62
Given :
5 cos A + 12 sin A + 12
To Find :
Minimum value of the given
Solution :
Minimum value of ' a cos A + b sin B ' is - √(a² + b²) as well ,
Maximum value of ' a cos A + b sin B ' is + √(a² + b²)
Lets calculate the minimum value of 5 cos A + 12 sin A
➠ - √(5² + 12²)
➠ - √(25 + 144)
➠ - √(169)
➠ - 13
- Minimum value of 12 is nothing but 12
Minimum value of 5 cos A + 12 sin A + 12 is ,
➙ 5 cos A + 12 sin A + 12
➙ - 13 + 12
➙ - 1
Alternate Method :
A/c to Pythagoras triplet 3rd number will be 13 ,
Divide and multiply with 13 ,
Let , cos B = 5/13 and sin B = 12/13
We know that , ' Minimum value for cos θ is - 1 as well maximum value of + 1 '
Similar questions