Math, asked by madhav5245, 1 month ago


 \sf \: lim \: n \to \infty  \:  \:  {n}^{ {n}^{ - 2} }  {\bigg((n + 1)(n +  \frac{1}{2} )(n +  \frac{1}{ {2}^{2}} ) -  - (n +  \frac{1}{ {2}^{n - 1} } )}^{n}
Evaluate the above limit.

Spammers please far away.

Quality answer needed.

Urgently required.

Please help.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

 \rm\displaystyle\lim_{n \to  \infty } \:  \: {n}^{ {n}^{ - 2} } {\bigg((n + 1)(n + \frac{1}{2} )(n + \frac{1}{ {2}^{2}} ) - - (n + \frac{1}{ {2}^{n - 1} } )\bigg)}^{n}

can be rewritten as

  = \rm\displaystyle\lim_{n \to  \infty } \frac{ {\bigg((n + 1)(n + \frac{1}{2} )(n + \frac{1}{ {2}^{2}} ) - - (n + \frac{1}{ {2}^{n - 1} } )\bigg)}^{n}}{ {( {n}^{n} )}^{2} }

\rm=\rm\displaystyle\lim_{n \to  \infty } {\bigg[\dfrac{(n + 1)\bigg(n +  \dfrac{1}{2}\bigg)\bigg(n +  \dfrac{1}{ {2}^{2}}\bigg) -  -  - \bigg(n +  \dfrac{1}{ {2}^{n - 1} } \bigg)}{ {n}^{n} } \bigg]}^{n}

\rm=\rm\displaystyle\lim_{n \to  \infty } {\bigg[\dfrac{(n + 1)\bigg(n +  \dfrac{1}{2}\bigg)\bigg(n +  \dfrac{1}{ {2}^{2}}\bigg) -  -  - \bigg(n +  \dfrac{1}{ {2}^{n - 1} } \bigg)}{ n \times n \times n \times  -  -  -  \times n } \bigg]}^{n}

\rm = \rm\displaystyle\lim_{n \to  \infty } {\bigg[\bigg(1 + \dfrac{1}{n}\bigg)\bigg(1 + \dfrac{1}{2n}\bigg) -  -  -  - \bigg(1 + \dfrac{1}{n {2}^{n - 1} }\bigg) \bigg]}^{n}

\rm = \rm\displaystyle\lim_{n \to  \infty } {\bigg(1 + \dfrac{1}{n}\bigg)}^{n}  {\bigg(1 + \dfrac{1}{2n}\bigg)}^{n} -  -  -  -  {\bigg(1 + \dfrac{1}{n {2}^{n - 1} }\bigg)}^{n}

We know,

\boxed{ \bf{ \: \rm\displaystyle\lim_{x \to  \infty } {\bigg(1 + \dfrac{k}{x}\bigg)}^{x} =  {e}^{k}  }}

So, using this identity, we get

\rm \:  =  \:e \times  {\bigg(e\bigg) }^{\dfrac{1}{2} } \times {\bigg(e\bigg) }^{\dfrac{1}{4} } \times  -  -  -  \times {\bigg(e\bigg) }^{\dfrac{1}{ {2}^{n - 1} } }

\rm \:  =  \:  {\bigg(e\bigg) }^{1 + \dfrac{1}{2}  + \dfrac{1}{4}    +  -  -  -  + \dfrac{1}{ {2}^{n - 1} } }

\rm \:  =  \:  {\bigg(e\bigg) }^{\dfrac{1\bigg[1 - \dfrac{1}{ {2}^{n} } \bigg]}{1 -  \dfrac{1}{2} } }

\rm \:  =  \:  {\bigg(e\bigg) }^{\dfrac{\bigg[1 - \dfrac{1}{ {2}^{n} } \bigg]}{ \dfrac{1}{2} } }

\rm \:  =  \:  {\bigg(e\bigg) }^{2\bigg[1 - \dfrac{1}{ {2}^{n} } \bigg]}

Similar questions