Answers
Given : A triangle DEF where right angle at E, length of ED and FD are √3k and 2k respectively. Further given that cos D = √3/2
To find : -
[1] The length of FE
[2] The value of tan F
[3] The value of sin D
Solution :-
[1] To find the length of side FE, we will use pythagoras theorem according to which,
- Hypo.² = Base² + Perpendicular²
Therefore, by applying pythagoras theorem in ∆DEF , we get:
⇒ EF² + ED² = FD²
⇒ EF² = FD² - ED²
⇒ EF = √[(2k)² - (√3k)²]
⇒ EF = √[4k² - 3k²]
⇒ EF = √k²
⇒ EF = k
Therefore the length of FE = k
[2] Now, to find the value of tan F, we must know the formula of tan θ.
- tan θ = Perpendicular/base
So,
⇒ tan F = DE/EF
⇒ tan F = √3k/k
⇒ tan F = √3
Therefore the value of tan F = √3
[3] Now, to find the value of sin D, we must know the formula of sin θ.
- sin θ = Perpendicular/hypotenuse
So,
⇒ sin D = EF/DF
⇒ sin D = k/2k
⇒ sin D = 1/2
Therefore the value of sin D = 1/2
Additional Information :-
- tan ϕ = sin ϕ/cos ϕ
- cosec ϕ = 1/sin ϕ
- sec ϕ = 1/cos ϕ
- cot ϕ = 1/tan ϕ
- cot ϕ = cos ϕ / sin ϕ
- sin² ϕ + cos² ϕ = 1
- cosec² ϕ - cot² ϕ = 1
- sec² ϕ - tan² ϕ = 1