Math, asked by Mister360, 2 months ago

\sf\pink{If \: x+ \dfrac{1}{x} =3} \: \underline{\red{Calculate}} \: \: \: x²+ \dfrac{1}{x²} \: \: , \: \: x³+ \dfrac{1}{x³} \\ \tt{and \: x⁴+ \dfrac{1}{x⁴}}

\textit {Quality}\:\textsl {answer }\:\textsc {required}

Answers

Answered by SweetLily
23

Identity used -

 \to \bold \pink{(a+b)² = a²+b² +2ab}\\ \\ \to \bold \orange{(a +b)³ = a³+b³ +3ab(a+b)}

------------------------------------------------

Solution

~Here the concept of algebric identity is used. We should know few identities and in order to find the values.

 \mathtt{Its  \: given  \: that  \:\color{skyblue} x+ \frac{1}{X} = 3}

Now square both the sides

 \sf{\implies (x+\frac{1}{x} )²= 3²} \\ \\  \sf{\implies x²+\frac{1}{x²}+ 2×x+\frac{1}{x} = 9} \\ \\ \sf{ \implies x²+\frac{1}{x²}= 9-2}\\ \\ \sf{\implies \color{red} x²+\frac{1}{x²}=7 }

____------_____------______------_____

Cube both the sides

 \sf{\implies  (x+\frac{1}{x} )³= 3³} \\\\ \sf{ \implies x³+\frac{1}{x³} +3×x×\frac{1}{x}(x+\frac{1}{x} )=27 }\\\\  \sf{\implies x³+\frac{1}{x³}+3(x+\frac{1}{x}) = 27}  \\  \\  \sf{ \implies  {x}^{3}  +  \frac{1}{ {x}^{3 } }  + 3 \times 3 = 27} \\  \\   \sf{ \implies   \color{magenta}{x}^{3}  +  \frac{1}{ {x}^{3 } } = 18}

____------_____------______------_____

We already know that

\sf{\bull \color{red} x²+\frac{1}{x²}=7 }

Square both the sides

\sf{\implies  (x²+\frac{1}{x²})^{2} =7^{2}  } \\  \\  \sf{ \implies  {x}^{4}  +  \frac{1}{ {x}^{4} } + 2 {x}^{2}   \times  \frac{1}{x  ^{2}} = 49 } \\  \\  \sf{ \implies  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 49 - 2} \\  \\  \sf{ \implies  \color{orange}{x}^{4}  +  \frac{1}{ {x}^{4} }  = 47 }

---------------------------------------------------

More identities!!

♦(x + y)² = x² + 2xy + y²

♦(x – y)² = x² – 2xy + y²

♦x²– y² = (x + y) (x – y)

♦(x + a) (x + b) = x2 + (a + b)x + ab.

♦(x + y + z)² = x² + y² + z²+ 2xy + 2yz + 2zx.

♦(x + y)³ = x³ + y³ + 3xy(x + y)

♦(x – y)³ = x³ – y³ – 3xy(x – y)

♦x³ + y³ + z³ – 3xyz = (x + y + z) (x² + y²+ z² – xy – yz – zx)

---------------------------------------------------

Similar questions