Math, asked by Anonymous, 2 months ago

\sf  \pink {Maths\: legends\: need \:help...!! }
\\\\
\large \red ✿\mathtt{\bold{ Prove\: that:-}}
\\\\
\displaystyle\sf P(n): \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2n+1}{n^2}\right)=(n+1)^2

\\\\

Answers

Answered by Shreerampendurkar
95

Step-by-step explanation:

let p(n):(1+3/1)(1+5/4)(1+7/9)(1+2n+1/n^2)=(n+1)^2

for n=1 :lhs=(1+3/1)=4.

Rhs=(1+1)^2=4

therefore,p(1)=true

let us assume p(k) is true for some k is element of N

i.e (1+3/1)(1+5/4)(1+7/9)(1+2k+1/n^2)=(k+1)^2

=(k+1)^2[1+2k+3/(k+1)^2]=(k+1)^2 + 2k + 3

=k^2+4k+4=[k+2]^2 = (k + 1) ^+ 2k + 3

=k^2+4k+4=[k+2]^2= [(k + 1)+1]^2

which is P(k+1)

hence by mathematical induction p(n) is true for all

n E N

Answered by Ataraxia
210

Solution :-

\displaystyle\sf P(n): \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2n+1}{n^2}\right)=(n+1)^2

For n = 1,

  : \implies \sf P(1) = \left(1+\dfrac{(2 \times 1)+1}{1^2}\right)= (1+1)^2

: \implies \sf P(1) = \left(1+\dfrac{3}{1}\right)= 2^2

: \implies \sf P(1) =4= 4

Thus P(n) is true for n = 1.

Assume that P(k) is true.

ie,

 \sf \displaystyle \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2k+1}{k^2}\right)=(k+1)^2

We shall now prove that P(k+1) is true.

 :  \implies \sf LHS  \: of \:  P(k+1) =(k + 1) ^{2}  \cdot \left( 1 + \dfrac{2k + 3}{ {(k + 1)}^{2} } \right)

:  \implies \sf LHS  \: of  \: P(k+1) =(k + 1) ^{2}  \cdot \left( \dfrac{(k + 1) ^{2}  + 2k + 3}{(k + 1) ^{2} } \right)

 :  \implies \sf LHS  \: of  \: P(k+1) =(k + 1) ^{2}  + 2k + 3

:  \implies \sf LHS  \: of  \: P(k+1) = {k}^{2}  + 2k + 1 + 2k + 3

:  \implies \sf LHS  \: of  \: P(k+1) = {k}^{2}  + 4k + 4

 :  \implies \sf LHS  \: of  \: P(k+1) =(k + 2) ^{2}

:  \implies \sf LHS  \: of  \: P(k+1) =(\overline{k + 1 }+ 1) ^{2}

:  \implies \sf LHS  \: of  \: P(k+1) =RHS \: of \: P(k+1)

Thus P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction P(n) is true for all n∈N.


Anonymous: Niçèeeēe! :3 :meow_wow:
MystícPhoeníx: Well Done Sisi
TheFairyTale: Well explained :D
Similar questions