Math, asked by AestheticSky, 2 months ago


 \sf \pink{ maths \: legends....!!!}
 \huge  \bf \:    {\underline{\underline{\red{ ✿Question}}}}
The attached figure shows a sector OAP of a circle with centre O, containing ∠\theta. AB is the perpendicular to the radius OA and meets OP produced at B. Prove that the perimeter of shaded region is :-

 \sf \purple{ r \bigg[\tan \theta +  \sec \theta +  \dfrac{ \pi \theta}{180}   - 1 \bigg]}
No spam ❌

No plagiarism ❌

Step by step explanation is mandatory.

seeking on expert's help :)​

Attachments:

Answers

Answered by King412
114

\\   \large  \underline { \underline \pink{\rm☯\: Question :- }}\\

The attached figure shows a sector OAP of a circle with centre O, containing ∠\theta. AB is the perpendicular to the radius OA and meets OP produced at B. Prove that the perimeter of shaded region is :-

 \sf \orange{ r \bigg[\tan \theta + \sec \theta + \dfrac{ \pi \theta}{180} - 1 \bigg]}

\\   \large  \underline { \underline \pink{\rm☯\: Solution :- }}\\

Perimeter of shaded region  \\  =    \sf \: AB + PB  + arc \:  length  \: AP \:  --- \: \:  \: \red{ (i)}

 \\  \sf \:  \:  \:  \:  \:  \:  \: Arc \: length \:  AP  =  \frac{ \theta}{360}  \times 2\pi r \\

 \\  \sf \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ \pi\theta r}{360}   -  -  -  -  -  -  \orange{(ii)}\\

Now, In right angled ∆OAB,

 \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: tan \:  \theta \:  =   \dfrac{AB}{r} \:  \\

 \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \therefore \:  \:  \:  \:  \:  \:     {AB} = {r} \: tan  \: \theta \: \:  -  -  -  - (iii)  \\

 \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: Sec \:  \theta \:  =   \dfrac{OB}{r} \:  \\

 \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \therefore \:  \:  \:  \:  \:  \:     {OB} = {r} \: sec \: \theta \:  \\

 \ \\  \sf \: OB = OP + PB

 \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \therefore \:  \:  \:  \:  \:  \:     {PB} = {r} \: sec \: \theta \:  -  \: r ----(iv)\\

Now, substitute (ii) ,(iii) ,(iv) in equation (i), then

we get

  \\   \:  \:  \:  \:  \:  \:  \:  \:  \implies \: \sf {  \sf {r   \: tan \theta +r  \: sec \theta - r + \dfrac{ \pi \theta}{180} - 1}} \\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \underline{\boxed{ \:   \sf \red{ r \bigg[\tan \theta + \sec \theta + \dfrac{ \pi \theta}{180} - 1 \bigg]}}} \\

Attachments:
Similar questions