1.)
2.)
Answers
Step-by-step explanation:
This is required solution.
Step-by-step explanation:
1) Given that :-
(x+1)/(x-1)=(2x+3)/(2x-5)
On applying cross multiplication then
=>(x+1)(2x-5)=(2x+3)(x-1)
=>2x^2+2x-5x-5=2x^2-2x+3x-3
=>2x^2-3x-5=2x^2+x-3
=>-3x-5=x-3
=>-3x-x=-3+5
=>-4x=2
=>x=2/-4
=>x= -1/2
The value of x= -1/2
Check:-
LHS:-
(x+1)/(x-1)
=>(-1/2+1)/(-1/2-1)
=>(1/2)/(-3/2)
=> -1/3
RHS:-
(2x+3)/(2x-5)
=>[2(-1/2)+3]/[2(-1/2)-5]
=>(-1+3)/(-1-5)
=>2/-6
=>-1/3
LHS =RHS is true for x=-1/2
2) Given that:-
(2x-3)^2+(2x+3)^2=(8x+6)(x-1)+22
=>[(2x)^2-2(2x)(3)+(3)^2]+[(2x)^2+2(2x)(3)+(3)^2] = 8x^2+6x-8x-6+22
=>4x^2-12x+9+4x^2+12x+9=8x^2-2x+16
=>8x^2+18=8x^2-2x+16
=>18=-2x+16
=>18-16=-2x
=>2=-2x
=>-2x=2
=>x= 2/-2
=>x= -1
The value of x= -1
Check:-
LHS:-
(2x-3)^2+(2x+3)^2
=>[2(-1)-3)]^2+[2(-1)+3]^2
=>(-2-3)^2+(-2+3)^2
=>(-5)^2+1^2
=>25+1
=>26
RHS:-
(8x+6)(x-1)+22
=>[8(-1)+6][-1-1]+22
=>(-8+6)(-2)+22
=>(-2)(-2)+22
=>4+22
=>26
LHS=RHS is true for x= -1