Math, asked by Denise2013, 2 months ago


 \sf{question}

Attachments:

Answers

Answered by WildCat7083
8

\sf{ Solution} \\  \\ \sf{Let \:  ABCD \:  be \:  the  \: given \:  trapezium  \: in \:  which}  \\  \sf{AD=BC=CD=10 cm} \\ \\  \sf{AP= x \:  cm} \\ \sf{∆APD=∆BQC} \\ \sf{QB= x \:  cm ---①⑴} \\  \\ \sf{In ∆APD,} \\\sf{ DP =  \sqrt{ {10}^{2} -  {x}^{2}  } \: (by  \: Pythagoras  \: theorem) } \\  \\ \sf \red{area \: of \: trapezium} \\\sf \green{a =  \frac{1}{2}  \times (sum \: of \: parallel \: sides) \times height} \\ \sf{=  \frac{1}{2}  \times (2x + 10 + 10) \times  \sqrt{100 -  {x}^{2} }} \: ーーー①ⅰ \\ \\  \sf{on \: differentiating \: both \: sides \: of \: eq \: ①} \\  \sf{we \: get}   \\ \\  \sf{ \frac{dA}{dx}  = (x + 10) \frac{( - 2x)}{2 \sqrt{100 -  {x}^{2} } }  +  \sqrt{100 -  {x}^{2} } } \\   \\  \sf{ \frac{ - 2 {x}^{2} - 10x + 100 }{ \sqrt{100 -  {x}^{2}} } } \:  \: ーーー①⑵\\ \\  \sf{for \: maximum \: put} \\  \sf{ \frac{dA}{dx}  = 0} \\ \\   \sf{ \frac{ - 2 {x}^{2} - 10x + 100 }{ \sqrt{100 -  {x}^{2} } }  = 0} \\  \\  \sf{2(x + 10)(x - 5) = 0} \\  \\  \sf{x = 5 \: or \: x =  - 10} \: ーーー① \\  \sf{Since, \:  X \:  represents  \: distance \:  cannot \:  be \:  negative.} \\  \sf{  \: So,  \: we \:  take  \: x=5} \\  \\  \sf{On \:  differentiating \:  both  \: sides  \: of  \: equation (ii)}\\   \\  \sf{by \: quotient \: rule}  \\  \ \sf{ =  \frac{ {\huge{[}}\frac{(100 -  {x}^{2})( - 4x - 10)}{ - ( - 2 {x}^{2}  - 10x + 100)( - x)}  {\huge{]}}  }{(100 -  {x}^{2})  {}^{ \frac{3}{2} } } } \\  \\  \sf{ =  \frac{2 {x}^{3} - 300x - 1000 }{(100 -  {x}^{2}) {}^{ \frac{3}{2} }  }} \:ーーー①   \\ \sf{at \: x = 5} \\  \\  \sf{ \frac{ {d}^{2}a }{d {x}^{2} }  =  \frac{2(5) {}^{3} - 300(5) - 1000 }{((100 - (5) {}^{2})  {}^{ \frac{3}{2} } } } \\  \\ \sf   {=  \frac{250 - 1500 - 1000}{(100 - 25) {}^{ \frac{3}{2} } } =  \frac{ - 2250}{75 \sqrt{75} }  < 0} \\  \\  \sf{Thus, area \:  of trapezium \:  is \:  maximum \:  at  \: x=5 }  \\ \sf{and  \: minimum \:  value \:  is:} \\  \\  \sf{A_{max}} = (5 + 10) \sqrt{100 - (5) {}^{2} }  \\  \sf{put \: x = 5 \: in \: eq. \: i} \\  \sf{(15 \sqrt{100 - 25)} = 15 \sqrt{75}  } \\  \sf{75 \sqrt{3}  {cm}^{2} }ーーー① \\  \\

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\sf{@WildCat7083 }

Attachments:
Similar questions