Math, asked by Cottoncandy786, 21 days ago


 \sf \: Question:−​​


Find the value of θ in each of the following. θ is an acute angle.


(i) 3 sec 2θ = 2√3 (ii) 4 cot 3θ - 4 = 0 (iii) 2 sin 2θ = 1


\begin{gathered}\begin{gathered}\begin{gathered} \blue \bigstar \: \red{\text{Only for :- }} \\ \end{gathered} \end{gathered} \: \end{gathered}

★ Brainly Star's

★ Best users


\begin{gathered}\begin{gathered}\begin{gathered} \blue \bigstar \: \red{\text{Note \::- }} \\ \end{gathered} \end{gathered}\end{gathered}\  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \

​ ★ Quality Answers

★ No useless answers ​​

Answers

Answered by diwanamrmznu
11

GIVEN★

  • (i) 3 sec 2θ = 2√3

  • (ii) 4 cot 3θ - 4 = 0

  • (iii) 2 sin 2θ = 1

find★

value of θ=?

EVALUATION★

let θ =a

  • (i) 3 sec 2a = 2√3

  •  =  > 3 \sec(2a)  = 2 \sqrt{3}  \\  \\  =  >  \sec(2a)  =  \frac{2 \sqrt{3} }{3} \\  \\  =  >  \sec(2a)   =  \frac{2 \sqrt{3} }{ \sqrt{3} \sqrt{3}  }  \\  \\  =  > sec(2a) =  \frac{2}{ \sqrt{3} }

  • we know that
  •  =  >  \sec(30)  =  \frac{2}{ \sqrt{3} } \\
  • to
  •  \sec(2a)  = sec(30)

  • comparison

 =  > 2a = 30 \\  \\  =  > a =  \frac{30}{2} \\  \\ =  >  a = 15

===================

(ii) 4 cot 3a - 4 = 0

  •  =  >  4\cot(3a)  = 4 \\  \\  =  >  \cot(3a)  =  \frac{4}{4}  \\  \\   =  > \cot(3a)  = 1
  • we know that

  =  > \cot(45)  = 1

 =  >  \cot(3a)  =  \cot(45)

  • coparision

 = >   3a = 45 \\  \\  =  > a =  \frac{45}{3}  \\  \\ =  >  a = 15

=============

(iii) 2 sin 2a = 1

  •  =  \sin(2a)  =  \frac{1}{2}  \\
  • we know that

 =  >  \sin(30)  =  \frac{1}{2}

to

  =  > \sin(2a)  =  \sin(30)

cmparision

 =  > 2a = 30 \\  \\  =  > a =  \frac{30}{2}  \\  \\  =  > a = 15

====================================

★★answer

θ=15° ✅

=======================

I hope it helps you

Answered by OoAryanKingoO78
2

Answer:

\tt \red{\underline{\underline{Given \: Question}}}

Find the value of θ in each of the following. (θ is an acute angle.)

(i) sec 2θ = 2/√3

(ii) 4 cot 3θ - 4 = 0

(iii) 3 tan² θ + 2 = 3

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Given:

(i) sec 2θ = 2/√3

(ii) 4 cot 3θ - 4 = 0

(iii) 3 tan² θ + 2 = 3

To find:

The value of the θ.

Solution:

(i) sec 2θ = 2/√3

sec 2θ = sec 30°

2θ = 30°

θ = 15°

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

(ii) 4 cot 3θ - 4 = 0

4 cot 3θ = 4

cot 3θ = 1

cot 3θ = cot 45°

3θ = 45°

θ = 15°

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

(iii) 3 tan² θ + 2 = 3

3 tan² θ = 3-2

3 tan² θ =1

tan² θ = 1/3

tanθ = √1/3

tanθ = 1/√3

tanθ = tan 30°

θ = 30°

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Final Answer :-

\boxed{\tt \red{(i) θ = 15}}

\boxed{\tt \red{(ii) θ = 15}}

\boxed{\tt \red{(iii) θ = 30}}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

HOPES IT HELPS YOU :)

Similar questions