Math, asked by Anonymous, 1 day ago


 \sf \: Question↑↑↑↑
 \tt{Only \:  proper  \: LaTeX \:  Answer  \: is \:  Required}
 \boxed{ \underline{ \tt \red{ Thank \:  You}}}

Attachments:

Answers

Answered by Aryan0123
45

Answer:

  • Length = 17 units
  • Breadth = 9 units

Step-by-step explanation:

Let:

  • Length be x
  • Breadth be y

Generally,

Area of rectangle = Length × Breadth = xy

Case 1: Length is reduced by 5. Breadth is increased by 3.

So, the area gets reduced by 9 units.

Area of rectangle = Length × Breadth

⇒ xy - 9 = (x - 5) (y + 3)

⇒ xy - 9 = x (y + 3) - 5(y + 3)

⇒ xy - 9 = xy + 3x - 5y - 15

⇒ -9 = 3x - 5y - 15

⇒ 15 - 9 = 3x - 5y

3x - 5y = 6 ------ [Equation 1]

Case 2: Length is increased by 3 units and breadth is increased by 2 units.

So, the area is increased by 67 units.

Area of rectangle = Length × Breadth

⇒ xy + 67 = (x + 3) × (y + 2)

⇒ xy + 67 = x (y + 2) + 3 (y + 2)

⇒ xy + 67 = xy + 2x + 3y + 6

⇒ 2x + 3y + 6 = 67

⇒ 2x + 3y = 67 - 6

2x + 3y = 61 ------ [Equation 2]

Now find x and y by using elimination method.

Multiply {Equation 1} by 3 and {Equation 2} by 5

3 (3x - 5y) = 3 × 6

9x - 15y = 18 ------ [Equation 3]

Also,

5 (2x + 3y) = 5 (61)

10x + 15y = 305 ------ [Equation 4]

Now, add Equation 3 and Equation 4 to eliminate y term.

9x - 15y = 18

{+} 10x + 15y = 305

19x = 323

➥ x = 323 ÷ 19

⇢ x = 17

∴ Length = 17 units

Now let's substitute the value of x in any one of the equation to find the value of y.

3x - 5y = 6

➝ 3(17) - 5y = 6

➝ 51 - 5y = 6

➝ - 5y = 6 - 51

➝ - 5y = -45

➝ 5y = 45

➝ y = 45 ÷ 5

➝ y = 9

∴ Breadth = 9 units

Answered by Anonymous
66

\begin{gathered}{\underline{\underbrace{\Huge{\bigstar{\textsf{\textbf{\blue{Solution :}}}}}}}}\end{gathered}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

{\large \qquad\boxed{{\begin{array}{cc}  \tt Let \:  Length  \: of \:  Rectangle  \: be  \: x  \: Units \\  \tt \& \:  Breadth  \: of  \: rectangle  \: be \:  y \:units\end{array}}}}

\tt Hence,

\tt Area = Length × Breadth

 \tt Area = xy

 \tt \underline{Given,}

{\large \qquad\boxed{{\begin{array}{cc}  \tt Area \:  Gets \:  Redused  \: by  \: 9  \: square  \: units \\  \\  \tt Length \:  is  \: Reduced  \: by  \: 5  \: units  \\  \\  \tt Breadth \:  increased \:  by  \: 3  \: units \end{array}}}}

 \tt New \:  area = New  \: Length × New  \: Breadth

 \tt Old  \: Area -9 =(Length -5)×(Breadth+3)

\orange{\large  \boxed{\boxed{\begin{array}{cc}\footnotesize \tt{xy - 9 = (x - 5)(y + 3)} \\ \\\footnotesize \tt{ xy - 9 = x(y + 3) - 5(y + 3)} \\ \\  \footnotesize \tt{xy - 9 = xy + 3x - 5y - 15} \\  \\ \footnotesize \tt{0 = xy + 3x - 5y - 15 - xy + 9} \\  \\  \footnotesize \tt{3x - 5y = 6}\xrightarrow{\text{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}(1)\end{array}}}}

 \tt \underline{So,}

 \tt New \:  area = New  \: Length × New  \: Breadth

 \tt Old  \: Area  + 67 =(Length  + 3)×(Breadth+2)

\pink{\large  \boxed{\boxed{\begin{array}{cc} \footnotesize \tt{xy + 6y = (x + 3)(y + 2)} \\ \\  \footnotesize \tt{xy + 67 = x(y + 2) + 3(y + 2)} \\ \\   \footnotesize \tt{xy + 67 = xy + 2x+ 3y + 6} \\  \\ \footnotesize \tt{0 = xy + 2x + 3y + 6 - xy - 67} \\  \\  \footnotesize \tt{2x + 3y - 61 = 0} \\  \\ \footnotesize \tt{2x + 3y = 61\xrightarrow{\text{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}(2)} \end{array}}}}

{\large\boxed{{\begin{array}{cc}  \tt Here \:  Our \:  Equations  \: Are \\   \\  \footnotesize \tt{3x - 5y = 6}\xrightarrow{\text{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}(1) \\ \footnotesize \tt{2x + 3y = 61\xrightarrow{\text{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}(2)} \end{array}}}}

 \tt{From(1)}

{\large  \boxed{\boxed{\begin{array}{cc} \footnotesize \tt{3x - 5y - 6 = 0} \\ \\  \footnotesize \tt{3x = 6x + 5y} \\ \\   \footnotesize \tt{x =  \dfrac{6 + 5y}{3}}   \end{array}}}}

 \tt{Putting  \: Value  \: of  \: x  \: in (2)}

{\large  \boxed{\boxed{\begin{array}{cc} \footnotesize \tt{2x + 3y = 61} \\ \\  \footnotesize \tt{2 \bigg( \dfrac{6 + 5y}{3}  \bigg) + 3y = 61} \\ \\    \end{array}}}}

 \tt Multiplying \:  both  \: sides  \: by  \: 3

\purple{\large \qquad \boxed{\boxed{\begin{array}{cc} \qquad \footnotesize \tt{3  \times 2 \bigg( \dfrac{(6 + 5y)}{3}  \bigg) + 3 \times 3y = 3 \times 61} \\ \\\qquad \footnotesize \tt{2(6 + 5y) + 9y = 183}  \\ \\\qquad  \footnotesize\tt{12 + 10y + 9y = 183} \\  \\ \qquad\footnotesize \tt{19y = 183 - 12}  \\  \\  \qquad \footnotesize \tt{19y = 171} \\  \\  \qquad \footnotesize \tt{y =  \cancel \dfrac{171}{9} } \\  \\ \qquad \footnotesize \tt{y = 9} \\  \\  \footnotesize \tt{Putting \:  y=9  \:   in  \: Equation (1)} \\  \\ \qquad \footnotesize \tt{3x - 5y = 6} \\  \\  \qquad \footnotesize \tt{3x - 5(9) = 6} \\  \\  \qquad \footnotesize \tt{3x - 45= 6} \\  \\ \qquad \footnotesize \tt{3x  = 6 + 45} \\  \\  \qquad \footnotesize \tt{3x  = 51} \\  \\ \qquad \footnotesize \tt{x  =   \cancel\dfrac{51}{3} } \\  \\ \qquad \footnotesize \tt{x  = 17} \end{array}}}}

 \tt{Therefore  \:  x=17,y=9}

 \orange{\large\boxed{{\begin{array}{cc}  \red{\begin{cases} \tt Length  \: of \:  Rectangle = x =17 \:  Units \\  \\   \tt Breadth \:  of  \: Rectangle = y= 9 \: units\end{cases}} \end{array}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions