Math, asked by Anonymous, 6 hours ago

\sf \red{\bigg(x - \frac{1}{x} \bigg) ^{ \frac{1}{2} } + \bigg(1 - \frac{1}{x} \bigg)^{ \frac{1}{2} } = x}

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:{\bigg(x - \dfrac{1}{x} \bigg) ^{ \dfrac{1}{2} } + \bigg(1 - \dfrac{1}{x} \bigg)^{ \dfrac{1}{2} } = x} -  -  - (1)

We know,

 \red{\rm :\longmapsto\: \sqrt{x} +  \sqrt{y} = \dfrac{x - y}{ \sqrt{x}  -  \sqrt{y} }}

So, using this we get

\rm :\longmapsto\:\dfrac{x - \dfrac{1}{x}  - \bigg(1 - \dfrac{1}{x} \bigg) }{{\bigg(x - \dfrac{1}{x} \bigg) ^{ \dfrac{1}{2} } -  \bigg(1 - \dfrac{1}{x} \bigg)^{ \dfrac{1}{2} }}} = x

can be further rewritten as

\rm :\longmapsto\:\dfrac{x - \dfrac{1}{x}  - 1  +  \dfrac{1}{x} }{{\bigg(x - \dfrac{1}{x} \bigg) ^{ \dfrac{1}{2} } -  \bigg(1 - \dfrac{1}{x} \bigg)^{ \dfrac{1}{2} }}} = x

\rm :\longmapsto\:\dfrac{x  - 1 }{{\bigg(x - \dfrac{1}{x} \bigg) ^{ \dfrac{1}{2} } -  \bigg(1 - \dfrac{1}{x} \bigg)^{ \dfrac{1}{2} }}} = x

\rm :\longmapsto\:x - 1 = x\bigg(\sqrt{x - \dfrac{1}{x} } -  \sqrt{1 - \dfrac{1}{x} }\bigg)

can be further rewritten as

\rm :\longmapsto\: \sqrt{x - \dfrac{1}{x} } -  \sqrt{1 - \dfrac{1}{x} } = \dfrac{x - 1}{x}

\rm :\longmapsto\: \sqrt{x - \dfrac{1}{x} } -  \sqrt{1 - \dfrac{1}{x} } = 1 - \dfrac{ 1}{x}  -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\: 2\sqrt{x - \dfrac{1}{x} }  = x + 1 - \dfrac{ 1}{x}

can be rewritten as

\rm :\longmapsto\: 2\sqrt{x - \dfrac{1}{x} }  = x  - \dfrac{ 1}{x} +  1

On squaring both sides, we get

\rm :\longmapsto\:4\bigg(x - \dfrac{1}{x} \bigg) =  {\bigg(x - \dfrac{1}{x}  \bigg) }^{2} + 1 +  2\bigg(x - \dfrac{1}{x} \bigg)

\rm :\longmapsto\: {\bigg(x - \dfrac{1}{x}  \bigg) }^{2} + 1  -   2\bigg(x - \dfrac{1}{x} \bigg)  = 0

can be reduced to

\rm :\longmapsto\: {\bigg(x - \dfrac{1}{x}  - 1 \bigg) }^{2}  = 0

\rm :\longmapsto\:x - \dfrac{1}{x} - 1 = 0

\rm :\longmapsto\:\dfrac{ {x}^{2}  - 1 - x}{x} = 0

\rm :\longmapsto\: {x}^{2} - x - 1 = 0

Now, to get the roots of this quadratic equation, we use Quadratic Formula.

So,

\rm :\longmapsto\:x = \dfrac{ - ( - 1) \:  \pm \:  \sqrt{ {( - 1)}^{2}  - 4(1)( - 1)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{1\:  \pm \:  \sqrt{ 1 + 4} }{2}

\rm :\longmapsto\:x = \dfrac{1\:  \pm \:  \sqrt{5} }{2}

Hence,

\bf\implies \:\boxed{\bf{  \: x = \dfrac{1\:  \pm \:  \sqrt{5} }{2} \: }}

Similar questions