CBSE BOARD XII, asked by Anonymous, 2 months ago

\sf \red{ Find \: the \: value \: of \: :- }
secθ(1+sinθ/cosθ+cosθ/1+sinθ)-2tan²θ
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
\sf \red{ Note \: :- }
• Please don't answer unnecessary.
• Please don't give any irrelevant answer.
• Don't spam!! ​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:sec\theta \bigg( \dfrac{1 + sin\theta }{cos\theta }  + \dfrac{cos\theta }{1 + sin\theta } \bigg)  - 2 \: {tan}^{2}  \theta

 \rm \:  =  \:  \:sec\theta \bigg(\dfrac{ {(1 + sin\theta )}^{2}  +  {cos}^{2}\theta  }{cos\theta (1 + sin\theta )} \bigg)   - 2 {tan}^{2}\theta

We know,

 \boxed{ \bf{ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

So using this identity, we get

 \rm \:  =  \:  \:sec\theta \bigg(\dfrac{1 +  {sin}^{2} \theta  + 2sin\theta  +  {cos}^{2}\theta  }{cos\theta (1 + sin\theta )} \bigg)   - 2 {tan}^{2}\theta

 \rm \:  =  \:  \:sec\theta \bigg(\dfrac{1 +  {sin}^{2} \theta +  {cos}^{2}\theta   + 2sin\theta }{cos\theta (1 + sin\theta )} \bigg)   - 2 {tan}^{2}\theta

We know that,

\boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this, we have

 \rm \:  =  \:  \:sec\theta \bigg(\dfrac{1 +  1   + 2sin\theta }{cos\theta (1 + sin\theta )} \bigg)   - 2 {tan}^{2}\theta

 \rm \:  =  \:  \:sec\theta \bigg(\dfrac{2   + 2sin\theta }{cos\theta (1 + sin\theta )} \bigg)   - 2 {tan}^{2}\theta

 \rm \:  =  \:  \:sec\theta \bigg(\dfrac{2(1   + sin\theta) }{cos\theta (1 + sin\theta )} \bigg)   - 2 {tan}^{2}\theta

 \rm \:  =  \:  \:sec\theta \bigg(\dfrac{2 }{cos\theta } \bigg)   - 2 {tan}^{2}\theta

\rm \:  =  \:  \:sec\theta (2sec\theta ) - 2 {tan}^{2} \theta

\rm \:  =  \:  \: {2sec}^{2}\theta  -  {2tan}^{2} \theta

\rm \:  =  \:  \:2( {sec}^{2}\theta  -  {tan}^{2} \theta )

We know,

\boxed{ \bf{ \:  {sec}^{2} x -  {tan}^{2} x = 1}}

So, using this, we have

\rm \:  =  \:  \:2 \times 1

\rm \:  =  \:  \:2

Hence,

The value of

\boxed{ \bf{ \: \:sec\theta \bigg( \dfrac{1 + sin\theta }{cos\theta }  + \dfrac{cos\theta }{1 + sin\theta } \bigg)  - 2 \: {tan}^{2}  \theta  \:  =  \: 2}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions