Math, asked by Anonymous, 3 months ago


 \sf \red{ \frac{Solve \: this}{━━━━━━━━━━━━━━━}}
 \sf {if \:  \sqrt{x^{2} - 36 }  = 8}
 \sf {Find \:  x}
 \sf \small \orange{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mapsto \:Dont  \: spam  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Answers

Answered by gotoo000612y
112

Answer:

Analysis

Here we're given a condition that \rm\sqrt{x^2-36}=8 And we've to the value of x which satisfies the equation. But as there is an over root in the equation, so first we've to open the root to ease the calculation.

Given

  • Equation= \rm\sqrt{x^2-36}=8

To Find

The value of x.

Answer

\implies\rm{\sqrt{x^2-36}=8}

\implies\rm{\big(\sqrt{x^2-36}\big)^2=\big(8\big)^2}

\implies\rm{x^2-36=64}

\implies\rm{x^2=100}

\implies\rm{x=\sqrt{100}}

\implies\rm{x=10}

{\boxed{\boxed{\implies{\bf{x=10\checkmark}}}}}

Verification

\implies\rm{ \sqrt{x^2-36}=8}

\implies\rm{ \sqrt{(10)^2-36}=8}

\implies\rm{ \sqrt{100-36}=8}

\implies\rm{ \sqrt{64}=8}

\implies\bf{8=8}

{\underline{\underline{\bf{Hence\:Verified\checkmark}}}}

Hence the value of x is 10 which is the required answer.

HOPE IT HELPS.

Answered by thakurkhushi2405
18

  \orange {ᏗᏁᏕᏇᏋᏒ}

 \sqrt {x ^{2}  - 36}   = 8 \\  {x}^{2}  - 36 =  {8}^{2}  \\  {x}^{2}  - 36 = 64 \\  {x}^{2}  = 64 + 36 \\  {x}^{2}  = 100 \\ x =  \sqrt{100}  \\ x = 10

 \pink {hope \: it \: helps \: u}

ᏦᏂᏬᏕᏂᎥ ᏂᏋᏒᏋ

Similar questions