Math, asked by TheMoonlìghtPhoenix, 8 months ago


 \sf{ \red{Hey  \ Everyone! }}

Answer this maths question
[Chapter Trigonometry, Class 10]
Prove that:-

 \bf( \dfrac{1}{ {sec}^{2}  \alpha  -  {cos}^{2}  \alpha } + \dfrac{1}{ {cosec}^{2}  \alpha  -  {sin}^{2}  \alpha})
 \bf\times  {sin}^{2}  \alpha  \  {cos}^{2}  \alpha  =
 \sf{ \purple{\dfrac{1 -  {sin}^{2}  \alpha  \ {cos}^{2} \alpha  }{ 2 + {sin}^{2}  \alpha  \ {cos}^{2} \alpha }}}
[Note that it has × sign also in LHS, and it is continued. Both LHS and RHS are written in different fonts]

Please, do not spam.
Correct answer with valid explanation will be marked as Brainliest. ​


TheMoonlìghtPhoenix: Alpha may be considered as theta, for convenience.

Answers

Answered by BrainlyIAS
81

Formula Applied :

\sf \bullet\ \; \red{sin^2\theta +cos^2\theta =1}

\bullet\ \; \sf \blue{sec\theta =\dfrac{1}{cos\theta}}\\\\\bullet\ \; \sf \pink{csc\theta=\dfrac{1}{sin\theta}}

\bullet\ \; \sf \green{a^2-b^2=(a+b)(a-b)}

Solution :

LHS

\\ \to \sf \left(\dfrac{1}{sec^2x-cos^2x}+\dfrac{1}{csc^2x-sin^2x}\right)sin^2x.cos^2x \\

\\ \to \sf \left( \dfrac{1}{\frac{1}{cos^2x}-cos^2x}+\dfrac{1}{\frac{1}{sin^2x}-sin^2x}\right)sin^2xcos^2x \\

\\ \to \sf \left(\dfrac{1}{\frac{1-cos^4x}{cos^2x}}+\dfrac{1}{\frac{1-sin^4x}{sin^2x}}\right)sin^2xcos^2x \\

\\ \to \sf \left(\dfrac{cos^2x}{1-cos^4x}+\dfrac{sin^2x}{1-sin^4x}\right)sin^2xcos^2x \\

\\ \to \sf \left(\dfrac{cos^2x(1-sin^4x)+sin^2x(1-cos^4x)}{(1-cos^4x)(1-sin^4x)}\right)sin^2xcos^2x \\

\\ \to \sf \left(\dfrac{cos^2x-cos^2x.sin^4x+sin^2x-sin^2x.cos^4x}{\red{(1+cos^2x)(1-cos^2x)(1+sin^2x)(1-sin^2x)}}\right)sin^2xcos^2x \\

\\ \to \sf \left(\dfrac{(sin^2x+cos^2x)-sin^2x.cos^2x(sin^2x+cos^2x)}{(1+cos^2x)(sin^2x)(1+sin^2x)(cos^2x)}\right)sin^2xcos^2x \\

\\ \to \sf \left(\dfrac{1-sin^2x.cos^2x}{(1+sin^2x)(1+cos^2x)\cancel{(sin^2x.cos^2x)}}\right)\cancel{sin^2x.cos^2x} \\

\\ \to \sf \left(\dfrac{1-sin^2x.cos^2x}{1+(cos^2x+sin^2x)+sin^2x.cos^2x}\right) \\

\\ \leadsto \sf \pink{\dfrac{1-sin^2x.cos^2x}{2+sin^2x.cos^2x}}\ \; \bigstar \\

RHS

Note : x = α


TheMoonlìghtPhoenix: Thank you!
Answered by Brâiñlynêha
89

To Prove :-

:\implies\sf  \dfrac{1} {sec^2 \alpha -cos^2 \alpha} + \dfrac{1}{ cosec^2\alpha - sin^2\alpha}\times sin^2\alpha \ cos^2 \alpha = \dfrac{1 - {sin}^{2} \alpha \ {cos}^{2} \alpha }{ 2 + {sin}^{2} \alpha \ {cos}^{2} \alpha }

Proof :-

  • taking LHS:-

\mapsto\sf\ \dfrac{1}{sec^2\alpha-cos^2\alpha}+\dfrac{1}{cosec^2\alpha-sin^2\alpha}\times sin^2\alpha cos^2\alpha\\ \\ \\ \bullet\sf\ \ sec\theta= 1/_{cos\theta}\ \ ;\ \ cosec\theta= 1/_{sin\theta}\\ \\ \\ \\ \mapsto\sf\ \Bigg\{\dfrac{1}{\Big(\frac{1}{cos^2\alpha}\Big)-cos^2\alpha}\Bigg\}+\Bigg\{\dfrac{1}{\Big(\frac{1}{sin^2\alpha}\Big)-sin^2\alpha}\Bigg\}\times \big(sin^2\alpha cos^2\alpha\big)\\ \\ \\ \\ \mapsto\sf\ \Bigg\{\dfrac{1}{\frac{1-cos^4\alpha}{cos^2\alpha}}\Bigg\}+\Bigg\{\dfrac{1}{\frac{1-sin^4\alpha}{sin^2\alpha}}\Bigg\}\times \big( sin^2\alpha cos^2\alpha\big)\\ \\ \\ \\ \mapsto\sf\ \bigg\{\dfrac{cos^2\alpha}{1-cos^4\alpha}\bigg\}+\bigg\{\dfrac{sin^2\alpha}{1-sin^4\alpha}\bigg\}\times \big(sin^2\alpha cos^2\alpha\big)\\ \\

\underline{\bigstar{\sf\ \ a^2-b^2=(a+b)(a-b)}}

\\ \\ \mapsto\sf \bigg\{\dfrac{cos^2\alpha}{(1+cos^2\alpha)(1-cos^2\alpha)}\bigg\}+\bigg\{\dfrac{sin^2\alpha}{(1+sin^2\alpha)(1-sin^2\alpha)}\bigg\}\times \big(sin^2\alpha cos^2\alpha\big)\\ \\ \\ \\ \star\sf\ \ sin^2\theta+cos^2\theta=1\\ \\ \\ \\ \mapsto\sf\ \bigg\{\dfrac{cos^2\alpha}{(1+cos^2\alpha)sin^2\alpha}\bigg\}+\bigg\{\dfrac{sin^2\alpha}{(1+sin^2\alpha)cos^2\alpha}\bigg\}\times \big(sin^2\alpha cos^2\alpha\big)\\ \\ \\ \\ \mapsto\sf\ \dfrac{cos^2\alpha\Big\{(1+sin^2\alpha)cos^2\alpha\Big\}+sin^2\alpha\Big\{(1+cos^2\alpha)sin^2\alpha\Big\}}{\cancel{sin^2\alpha cos^2\alpha}(1+cos^2\alpha)(1+sin^2\alpha)}\times \cancel{\big(sin^2\alpha cos^2\alpha\big)}\\ \\ \\ \\ \mapsto\sf\ \dfrac{cos^4\alpha+sin^2\alpha cos^4\alpha+ sin^4\alpha+cos^2\alpha sin^4\alpha}{(1+cos^2\alpha)(1+sin^2\alpha)}

\\ \\ \mapsto\sf\ \dfrac{sin^4\alpha+cos^4\alpha+sin^2\alpha cos^4\alpha + sin^4\alpha cos^2\alpha}{(1+cos^2\alpha)(1+sin^2\alpha)}\\ \\ \\ \bullet\sf\ \ (sin^2\alpha+cos^2\alpha)^2-2sin^2\alpha cos^2\alpha= (sin^4\alpha+cos^4\alpha)\\ \\ \\ \bullet\sf\ \ 1-2sin^2\alpha cos^2\alpha= sin^4\alpha+cos^4\alpha \\ \\ \\ \\ \mapsto\sf\ \dfrac{1-2sin^2\alpha cos^2\alpha +sin^2\alpha cos^2\alpha(sin^2\alpha+cos^2\alpha)}{1+sin^2\alpha+cos^2\alpha+sin^2\alpha cos^2\alpha}\\ \\ \\ \\ \mapsto\sf\ \dfrac{1-2sin^2\alpha cos^2\alpha+sin^2\alpha cos^2\alpha(1)}{1+1+sin^2\alpha cos^2\alpha}\ \ \ \ \therefore\bigg[sin^2\theta+cos^2\theta=1\bigg]\\ \\ \\ \\ \mapsto\boxed{\red{\sf \dfrac{1-sin^2\alpha cos^2\alpha}{2+sin^2\alpha cos^2\alpha}}}\ \ \ \ \ \sf\ Hence\ Proved !!


TheMoonlìghtPhoenix: Thank you!
Brâiñlynêha: Welcome :)
BrainlyPopularman: Splendid ♥️
Brâiñlynêha: thanks:p
Similar questions