Math, asked by VεnusVεronίcα, 3 months ago


\sf \red {Heya~folks..!}
\sf \red {Answer \: the \: question \: that \: follows:-}


If \sf \cfrac{x}{a}cos\theta+\cfrac{y}{b}sin\theta=1 and \sf \cfrac{x}{a}sin\theta-\cfrac{y}{b}cos\theta=1, prove that \sf \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=2
\sf \red {Spamming \: isn't \: tolerated!}

Answers

Answered by Ranveerx107
20

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

\sf \cfrac{x}{a}cos\theta+\cfrac{y}{b}sin\theta=1_________(i)

\sf \cfrac{x}{a}sin\theta-\cfrac{y}{b}cos\theta=1_________(ii)

  • squaring both equation and then adding

(\sf \cfrac{x}{a}cos\theta+\cfrac{y}{b}sin\theta=1) {}^{2} +  (\sf \cfrac{x}{a}sin\theta-\cfrac{y}{b}cos\theta=1) {}^{2}

1²+x²/a² cos²θ + y²/b² sin²θ + 2xy/ab sinθ.cosθ + x²/a² sin²θ + y²/b² cos²θ - 2xy/ab sinθ.cosθ = 2

⇒x²/a² (cos²θ + sin²θ) + y²/b² (sin²θ + cos²θ ) = 2

⇒x²/a² × 1 + y²/b² × 1 = 2

[ ∵ sin²x + cos²x = 1 from trigonometric identities ]

x²/a² + y²/b² = 2 , hence proved

Answered by IndianInspector
16

\bigstar  According To Question ;

  • \sf{x/a\:\cos\theta + y/b\:\sin\theta = 1} and \sf{x/a\:\sin\theta - y/b\:\cos\theta = 1}
  • We need to Prove that \sf{x^2/a^2 + y^2/b^2 = 2}

\rule{330}{2}

  • Consider \sf{x/a\:\cos\theta + y/b\:\sin\theta = 1} as Equation 1
  • Consider \sf{x/a\:\sin\theta - y/b\:\cos\theta = 1} as Equation 2

Now Square Equation 1 first and Equation 2 next on Both Sides

\longrightarrow\sf{(x/a\:\cos\theta + y/b\:\sin\theta)^2 = 1^2\quad...\:Equation\:3}

\longrightarrow\sf{(x/a\:\sin\theta - y/b\:\cos\theta)^2 = 1^2\quad...\:Equation\:4}

Add Equation 3 and Equation 4

\longrightarrow\sf{(x/a\:\cos\theta + y/b\:\sin\theta)^2 + (x/a\:\sin\theta - y/b\:\cos\theta)^2 = 1^2+1^2}

Apply \sf{(a+b)^2=a^2+b^2+2ab} identity for expanding Equation 3, Where a = \sf{x/a\:\cos\theta} and b = \sf{y/b\:\sin\theta} and Apply \sf{(a-b)^2=a^2+b^2-2ab} identity for expanding Equation 4, Where a = \sf{x/a\:\sin\theta} and b = \sf{y/b\:\cos\theta}

\longrightarrow\sf{(x/a\:\cos\theta + y/b\:\sin\theta)^2 + (x/a\:\sin\theta - y/b\:\cos\theta)^2 = 1+1=2}

When we expand Equation 3 and Equation 4 by identities, We get\sf{(x/a\:\cos\theta + y/b\:\sin\theta)^2 =\frac{x^{2}}{a^{2}} \cos ^{2} \theta+\frac{y^{2}}{b^{2}} \sin ^{2} \theta+\frac{2 x y}{a b} \sin \theta \cos \theta} and \sf{(x/a\:\sin\theta - y/b\:\cos\theta)^2 = \frac{x^{2}}{a^{2}} \sin ^{2} \theta+\frac{y^{2}}{b^{2}} \cos ^{2} \theta-\frac{2 x y}{a b} \sin \theta \cos \theta}

\longrightarrow\sf{x^2/a^2\:\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+y^2/b^2\:\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=2}

We know \sf{\sin^2\theta+\cos^2\theta = 1} from Trigonometric Identities

\longrightarrow\sf{x^2/a^2\:\left(1)+y^2/b^2\:\left(1)=2}\longrightarrow\sf{x^2/a^2+y^2/b^2=2\quad...\:Hence \:Proved}

Similar questions