Math, asked by ItzShizuka50, 1 month ago


\sf\red{If \: (x +  \frac{1}{x}) = 5 \: then \: find \: ( {x}^{2} +  \frac{1}{ {x}^{2} } and \: ( {x}^{4}  +  \frac{1}{ {x}^{4} }.  }
➵Need Quality Answers
➵With full explanation..
★No spam★​

Answers

Answered by Anonymous
12

We are given,

 \bigg(x +  \frac{1}{x} \bigg ) = 5

Let's figure out,

 \longrightarrow \bigg(x +  \frac{1}{x} \bigg ) = 5 \\

 \longrightarrow {\bigg(x +  \frac{1}{x} \bigg ) }^{2}  =  {5}^{2} \\

 \longrightarrow \bigg( {x}^{2}  +  \frac{1}{ {x}^{2}}  + 2 \times x \times  \frac{1}{x} \bigg ) = 25 \\

 \longrightarrow \bigg( {x}^{2}  +  \frac{1}{ {x}^{2}}  + 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x}} \bigg ) = 25 \\

 \longrightarrow \bigg( {x}^{2}  +  \frac{1}{ {x}^{2}}  \bigg) = 25  - 2\\

 \longrightarrow  \bf\bigg( {x}^{2}  +  \frac{1}{ {x}^{2}}  \bigg) = 23 \:  \:  \: Ans. no ( 1 )

 \:  \:   \mapsto  \ \: Let's  \:  \: square  \:  \:  both  \:  \: sides

 \longrightarrow  {\bigg( {x}^{2}  +  \frac{1}{ {x}^{2}}  \bigg) }^{2}  =  {23}^{2}

 \longrightarrow  {\bigg( {x}^{4}  +  \frac{1}{ {x}^{4}}   + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} } \bigg) }^{}  =  529

 \longrightarrow  {\bigg( {x}^{4}  +  \frac{1}{ {x}^{4}}   + 2 \times  \cancel{ {x}^{2}}  \times  \frac{1}{  \cancel{{x}^{2} }} \bigg) }^{}  =  529

 \longrightarrow  \bf {\bigg( {x}^{4}  +  \frac{1}{ {x}^{4}}    \bigg) }^{}  =  527 \:  \: Ans. no ( 2)

Answered by kinzal
13

αղsաҽɾ :

  •  \sf x^2 + \frac{1}{x^2} = 23 \\

  •  \sf x^4 + \frac{1}{x^4} = 527 \\

ҽxթlαղαԵíօղ :

-------------------------------------

 \longrightarrow In equation  \sf x + \frac{1}{x} = 5 \\

 \longrightarrow Now take square from both side In given equation ,

  •  \sf \bigg( x + \frac{1}{x} \bigg)^{2} = (5)² \\

 \longrightarrow Here, We can apply Identity of (a + b)² = a² + b² + 2ab

  •  \sf (x )^2 + \bigg(\frac{1}{x}\bigg)^2 + 2(x) \bigg(\frac{1}{x}\bigg) = 25 \\

  •  \sf (x)^2 + \bigg(\frac{1}{x}\bigg)^2 + 2(\cancel{x}) \bigg(\frac{1}{\cancel{x}}\bigg) = 25 \\

  •  \sf x^2 + \frac{1}{x^2} + 2 = 25 \\

  •  \sf {x}^{2}  +  \frac{1}{ {x}^{2} }  = 25 - 2 \\

  •  \sf {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23 \\

 \longrightarrow Hence,

  •  \purple{\underline{\boxed{\bf {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23 }}} \\

-------------------------------------

 \longrightarrow Now, For  \sf x^4 + \frac{1}{x^4} \\

 \longrightarrow Here, we had already Find out that,

  •  \sf {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23 \\

 \longrightarrow So, Now Again We have to take square from both sides in above equation

 \longrightarrow Hence,

  •  \sf \bigg( {x}^{2} +  \frac{1}{ {x}^{2} }\bigg)^{2}  = ({23})^{2} \\

 \longrightarrow Here, Again We can apply Identity of (a + b)² = a² + b² + 2ab

  •  \sf ( {x}^{2})^2 +  \bigg(\frac{1}{ {x}^{2} }\bigg)^{2}   + 2( {x}^{2}) \bigg( \frac{1}{ {x}^{2} } \bigg)  = ({23})^{2}\\

  •  \sf ( {x}^{2} )^{2} +  \bigg(\frac{1}{ {x}^{2} }\bigg)^{2}   + 2( \cancel{{x}^{2}}) \bigg( \frac{1}{\cancel{ {x}^{2}} } \bigg)  = ({23})^{2}\\

  •    \sf {x}^{4}  +  \frac{1}{ {x}^{4} } + 2  = 529 \\

  •  \sf {x}^{4}  +  \frac{1}{ {x}^{4} }  = 529 - 2 \\

  •  \sf {x}^{4}  +  \frac{1}{ {x}^{4} }  = 527 \\

 \longrightarrow Hence,

  •  \purple { \underline{\boxed{\bf {x}^{4}  +  \frac{1}{ {x}^{4} }  = 527 }}} \\

-------------------------------------

I hope it helps you ❤️✔️

Similar questions