Math, asked by Anonymous, 2 months ago


 \sf \red{Prove \: that :-  }
 \sf{{ ( \frac{1 +  \tan^{2} A }{1 +  \cot^{2} A } )}= ( \frac{1 -  \tan \: A }{1 -  \cot A} ) ^{2}  =  \tan^{2} A}

Answers

Answered by OtakuSama
60

Question:-

 \\\\\sf {Prove \: that :- }

  \\\sf{{ ( \frac{1 + \tan^{2} A }{1 + \cot^{2} A } )}= ( \frac{1 - \tan \: A }{1 - \cot A} ) ^{2} = \tan^{2} A}\\\\

Required Answer:-

 \\\\ \sf{ \large{ \underline{ \underline{Formulas \: Applied}}}}\\

 \\  \sf{ \bold{1 +  \tan {}^{2} A} =  \sec {}^{2}  A}

 \sf{ \bold{1 +  \cot {}^{2} A }=  \cosec {}^{2} A}

 \sf{ \bold{ \sec\: A} =  \frac{1}{ \cos \:A} }

 \sf{ \bold{ \cosec \: A=  \frac{1}{ \sin \:A  } }}

 \sf{ \bold{ \frac{ \sin {}^{2} A}{ \cos {}^{2} A } } =  \tan {}^{2} A}

 \sf{ \bold{ \cot \: A =  \frac{1}{ \tan \: A } }}\\\\

Solution :-

L. H. S. =

  \\  \sf{ \bold{ \frac{1 +  \tan {}^{2}A  }{1 +  \cot {}^{2}A } }}

 \\  \sf{ \implies{ \frac{ \sec {}^{2}A}{ \cosec{}^{2}A } }}

 \\  \sf{ \large{ \implies{ \frac{ \frac{1}{ \cos {}^{2}  A} }{ \frac{1}{ \sin {}^{2}A } } }}}

 \\  \sf{ \implies{ \frac{ \sin {}^{2}A  }{ \cos {}^{2} A } }}

  \\ \sf{ \implies{ \pink{ \tan {}^{2}  A}}}

R. H. S. =

 \\  \sf{ \bold{( \frac{1 -  \tan \: A }{1 -  \cot \: A })  {}^{2} }}

 \\  \sf{ \implies{ \large{ ( }\frac{1 -  \tan \: A }{1 -   \frac{1}{ \tan \: A} }} \large{) {}^{2} }}

 \\  \sf{ \implies{ (\frac{1 -  \tan \: A }{ \frac{ \tan \: A - 1 }{ \tan \: A}}) {}^{2}  } }

 \\  \sf{ \implies{( \frac{1 -  \tan \: A }{ \tan \: A - 1 }  \times  \tan \: A}) {}^{2} }

 \\  \sf{ \implies{ { (-  \tan \: A) }^{2} }}

 \\  \sf{ \implies{ \pink{ \tan {}^{2}  \: A }}}

  \\ \sf{ \green{ \bold{L.H.S.= R. H. S.=\tan {}^{2}  \: A  }}} \\  \\

Hence Proved!!

Answered by llSarcasticBalikall
18

Answer:

sweet_quail

Step-by-step explanation:

ᴍᴀᴛʜᴇᴍᴀᴛɪᴄꜱ ɪꜱ ᴛʜᴇ ꜱᴄɪᴇɴᴄᴇ ᴛʜᴀᴛ ᴅᴇᴀʟꜱ ᴡɪᴛʜ ᴛʜᴇ ʟᴏɢɪᴄ ᴏꜰ ꜱʜᴀᴘᴇ, Qᴜᴀɴᴛɪᴛʏ ᴀɴᴅ ᴀʀʀᴀɴɢᴇᴍᴇɴᴛ. ᴍᴀᴛʜ ɪꜱ ᴀʟʟ ᴀʀᴏᴜɴᴅ ᴜꜱ, ɪɴ ᴇᴠᴇʀʏᴛʜɪɴɢ ᴡᴇ ᴅᴏ. ɪᴛ ɪꜱ ᴛʜᴇ ʙᴜɪʟᴅɪɴɢ ʙʟᴏᴄᴋ ꜰᴏʀ ᴇᴠᴇʀʏᴛʜɪɴɢ ɪɴ ᴏᴜʀ ᴅᴀɪʟʏ ʟɪᴠᴇꜱ, ɪɴᴄʟᴜᴅɪɴɢ ᴍᴏʙɪʟᴇ ᴅᴇᴠɪᴄᴇꜱ, ᴀʀᴄʜɪᴛᴇᴄᴛᴜʀᴇ (ᴀɴᴄɪᴇɴᴛ ᴀɴᴅ ᴍᴏᴅᴇʀɴ), ᴀʀᴛ, ᴍᴏɴᴇʏ, ᴇɴɢɪɴᴇᴇʀɪɴɢ, ᴀɴᴅ ᴇᴠᴇɴ ꜱᴘᴏʀᴛꜱ.

Similar questions