Math, asked by XxItzzMrUnknownxX, 4 days ago

\sf\red{QuEsTiOn}

\displaystyle \rm \frac{\sqrt{\sqrt{5} +2}+\sqrt{\sqrt{5} -2} }{\sqrt{\sqrt{5} +1} } -\sqrt{3-2\sqrt{2} }


Answers

Answered by XxitzZBrainlyStarxX
8

Question:-

 \sf \large \frac{\sqrt{\sqrt{5} +2}+\sqrt{\sqrt{5} -2} }{\sqrt{\sqrt{5} +1} } -\sqrt{3-2\sqrt{2} }

Given:-

 \sf \large \frac{\sqrt{\sqrt{5} +2}+\sqrt{\sqrt{5} -2} }{\sqrt{\sqrt{5} +1} } -\sqrt{3-2\sqrt{2} }

To Find:-

  • The value of the Given function.

Solution:-

 \sf \large Let, \frac{\sqrt{\sqrt{5} +2}+\sqrt{\sqrt{5} -2} }{\sqrt{\sqrt{5} +1} } -\sqrt{3-2\sqrt{2} } \:  \:  = x

On squaring both sides, we get

 \bigg( \frac{ \sqrt{ \sqrt{5} + 2  }  +  \sqrt{ \sqrt{5}  - 2} }{ \sqrt{ \sqrt{5}  + 1} }  \bigg) \sf \large ^{2}  = x {}^{2}

 \sf \large⇒x {}^{2} =  \frac{ \sqrt{5} + 2 +  \sqrt{5} -2 + 2 \sqrt{( \sqrt{5}  + 2)( \sqrt{5}  - 2)} }{ \sqrt{5}  + 1}

 \sf \large⇒x {}^{2}  =  \frac{2 \sqrt{5} + 2 \sqrt{5 - 4}  }{ \sqrt{5} + 1 }

 \sf \large⇒x {}^{2}  =  \frac{2( \sqrt{5} + 1 )}{ \sqrt{5}  + 1}

 \sf \large⇒x {}^{2}  = 2

  \sf \large⇒x {}^{2}  =  \sqrt{2}

 \sf \large Also, \sqrt{3 - 2 \sqrt{2} }  \: can \: be \: written  \\  \sf \large as \:  \sqrt{1 {}^{2} + ( \sqrt{2}) {}^{2}  - 2 \times 1 \times  \sqrt{2}   }  \: i.e., \:  \sqrt{2}  - 1

Answer:-

 \sf \large  \color{blue}  \therefore \frac{\sqrt{\sqrt{5} +2}+\sqrt{\sqrt{5} -2} }{\sqrt{\sqrt{5} +1} } -\sqrt{3-2\sqrt{2} } = 1.

Hope you have satisfied.

Similar questions