Math, asked by anshu24497, 3 months ago

\sf{ \red{Solve \: the \: following \: :}}

\sf{i) \: \frac{1}{9} - \frac{4}{8} + \frac{3}{6} }

\sf{ii) \: 12 - 4\times \frac{1}{3} }

\sf{ \red {Solve \: the \: following \: equation \: : }}

\sf{a) \: 3(x - 2) + 7 = 22}

\sf{b) \: - 2(x - 5) + 7 = 17}

Answers

Answered by zeesoftzs
2

Answer:

a) \: 3x - 6 = 22 - 7 \\ 3x = 15 + 6\\ 3x = 21 \\ x =  \frac{21}{3}  \\ x = 7

b) - 2x + 10 + 7 = 17 \\  - 2x + 17 = 17 \\  - 2x = 17 - 17 \\ x = 0

Answered by BrainlyPhantom
8

Solution:

\sf{{i)\:\dfrac{1}{9}-\dfrac{4}{8}+\dfrac{3}{6}}}

In order to add three improper fractions, we need to equivalize the denominators. Here the denominators are:

9, 8 and 6.

LCM of 9, 8 and 6 = 72

Therefore:

\sf{=\dfrac{1}{9}\times\dfrac{8}{8}=\dfrac{8}{72}}

\sf{=\dfrac{4}{8}\times\dfrac{9}{9}=\dfrac{36}{72}}

\sf{=\dfrac{3}{6}\times\dfrac{12}{12}=\dfrac{36}{72}}

So,

\sf{=\dfrac{8}{72}-\dfrac{36}{72}+\dfrac{36}{72}}

\sf{=\dfrac{8-36+36}{72}}

\sf{=\dfrac{8}{72}}

Simplifying the fraction:

\sf{\dfrac{8}{72}=\dfrac{1}{9}}

Answer: 1/9

\sf{ii)\:12-4\times\dfrac{1}{3}}

According to the BODMAS theorem, multiplication comes before subtraction.

Hence:

\sf{12\times\dfrac{-4}{3}}

Cancelling 3 and 12:

\sf{4\times-4}

\sf{-16}

Answer: -16

\sf{a)\:3(x-2)+7=22}

Opening the brackets:

\sf{3x-6+7=22}

Moving the constants to the RHS:

\sf{3x=22+6-7}

\sf{3x=21}

\sf{x=\dfrac{21}{3}}

\sf{x=7}

Answer: x = 7

\sf{b)\:-2(x-5)+7=17}

Opening the brackets:

\sf{-2x+10+7=17}

Moving the constants to the RHS:

\sf{-2x=17-10-7}

\sf{-2x=0}

\sf{x=\dfrac{0}{2}}

\sf{x=0}

Answer: x = 0

Final Answers:

→ 1/9

→ -16

→ 7

→ 0

Similar questions