Math, asked by Anonymous, 4 months ago

\sf{s_1 , s_2} are inscribed and circumscribed circles of a Triangle with sides 3,4,5 then \sf\dfrac{area\:of\:s_1}{area\:of\:s_2} is ?

PLS HELP ME ​

Answers

Answered by TheBrainlyStar00001
97

Your Question :-

\\

  • \sf{s_1 , s_2} are inscribed and circumscribed circles of a Triangle with sides 3,4,5 then \sf\dfrac{area\:of\:s_1}{area\:of\:s_2} is ?

\\\\

Given :-

\\

  • \sf{s_1 , s_2} are inscribed and circumscribed circles of a Triangle with sides 3,4,5.

\\\\

To Find :-

\\

  • \sf\dfrac{area\:of\:s_1}{area\:of\:s_2}

\\\\

Explanation :-

\\\\

Sides of triangle ➣ 3,4,5

\\\\

✪ 3² + 4² = 5² [right angled]

\\\\

.°. Given triangle is a right angled triangle.

 \\  ✫\:\color{darkviolet}\tt \dfrac{a}{sin \: A}    =  2R \:  \implies \: a \:  =  \: 2R \\  \\

  ✫\:\color{purple}\bf R \: :  \implies \:  \frac{a}{2}  =  \frac{5}{2}  \\  \\

  ✪\:\color{red}\tt r\:  =  \:  \frac{ \triangle}{5}  \:  =  \:   \frac{\frac{1}{2}  \times 4 \times 3}{ \frac{5 + 4 + 3}{2} }  = 1 \\  \\

❀\:\bf{\underline{Thus}}, \:  \:  \color{darkgreen}\sf \dfrac{The \: area \:  of  \: inscribed \:  circle \: s_{1}}{\: area  \: of \:  circumscribed \:  circle \: s_{2  }} \\\\

 ➲ \:  \color{blue} \tt \frac{\pi r {}^{2} }{\pi R {}^{2} }\:\:\:\:  ➲ \:  \orange{\tt \dfrac{1 {}^{2} }{ (\frac{5}{2}) {}^{2} } } \:\:\:\:➲ \:  \tt \color{darkviolet} \:  \frac{1 \times 1}{ \frac{5 \times 5}{2 \times 2} } ➲ \:  \tt \color{darkblue} \:  \frac{1}{ \frac{25}{4} }  \:\:\:\:➲ \:  \:  \color{darkgreen} \tt 1\times \left(\frac{4}{25}\right) \\ \\

➥ \:  \:   \underline{\boxed{\bf  \frac{4}{25}}}  \\  \\

 ✰ \:  \: \boldsymbol{\therefore{ \underline{\:\:Hence}, } \:  \:  \color{purple}\sf \dfrac{The \: area \:  of  \: inscribed \:  circle \: s_{1}}{\: area  \: of \:  circumscribed \:  circle \: s_{2  }} \:  \:  \color{black}➣  \:  \:   \color{red}\underline{\boxed{ \bf\frac{4}{25} } }}  \\  \\

Note :- Please slide left or right to see the full ans.

✰ Hope it helps u ✰

Attachments:
Answered by BrainlyHeartbeat1234
5138

\large{ \mathbb{ \colorbox{blac} { \boxed{ \boxed{ \colorbox{blue} {-:Answer:-}}}}}}

\large{ \pmb{ \underline{ \underline{\frak{ \color{red}{Given::}}}}}}

\pink{➠}{ \sf{s_1 , s_2}are  \: inscribed  \: and  \:circumscribed\:circles \: of  \: a  \: triangle\: with \:  sides\: 3,4 \: and \: 5}

\large{ \pmb{ \underline{ \underline{\frak{ \color{b}{To  \: find::}}}}}}

\pink{➠}{ \sf{\dfrac{Area\:of\:inscribed \: circle(s_1)}{Area\:of\:circumscribed \: circle(s_2)}}}

\large{ \pmb{ \underline{ \underline{\frak{ \color{pink}{Formula  \: used::}}}}}}

\pink{➠}{ \sf{\dfrac{a}{sin \:  A} = 2R \:  \:  ...(i)   \{Area  \: circumradius  \: formula \}}}

\large{ \pmb{ \underline{ \underline{\frak{ \color{gold}{Concept  \: used::}}}}}}

\pink{➠}{ \pmb{ \bf{In \:  right-angled  \: triangle,}}}

{::  \implies \sf {(Hypotenuse)}^{2}  =  {(Base)}^{2}  +  {(Perpendicular)}^{2} \:  \: ...(ii) \{ By \: pythagoras \: theorem \}}

\large{ \pmb{ \underline{ \underline{\frak{ \color{plum}{According  \: to \:  Question::}}}}}}

 \pmb{ \bf{Let's  \: start  \: now \: from  \: concepts!!!}}

\pink{➠}{ \sf {(Hypotenuse)}^{2}  =  {(Base)}^{2}  +  {(Perpendicular)}^{2} \:  \: \{ By \:equation  \: (ii) \}}

{:: \implies{ \sf {(5)}^{2}  =  {(3)}^{2}  +  {(4)}^{2} \:  \:}}

{:: \implies{ \sf {25} =  9  +  16 \:  \:}}

{:: \implies{ \sf {25} =  25\:}}

 \bf{So, \triangle ABC  \: is  \: right-angled  \: triangle.}

 \pmb{ \bf{Then,by  \: using  \: the  \: formula;}}

\pink{➠}{ \sf{\dfrac{a}{sin \:  A} =Diameter \:  \:     \{From \: equation  \: (i) \}}}

\pink{➠}{ \sf{\dfrac{a}{sin \:  A} = 2R \:  \:  }}

: :  \implies{ \sf{{a} = 2R \:  \:  }}

{: :  \implies{ \sf{Radius  \: of  \: circumscribed  \: circle(R) =  \frac{a}{2} =  \frac{5}{2} }  }}

{\pink{➠}{ \sf{Radius  \: of  \: inscribed \: circle (r)=  \frac{Area \: of \: triangle}{semi - perimeter} }}}

{: :  \implies{ \sf{ Radius  \: of  \: inscribed \: circle(r)=  \frac{ \frac{1}{2} \times 4 \times 3 }{ \frac{3 + 4 + 5}{2} } }}}

{: :  \implies{ \sf{Radius  \: of  \: inscribed \: circle (r)=  \frac{ \frac{1}{  \cancel 2} \times  \cancel 4 \times 3 }{ \frac{12}{2} } }}}

{: :  \implies{ \sf{ Radius  \: of  \: inscribed \: circle(r)=  \frac{2\times 3 }{ 6 } }}}

{: :  \implies{ \sf{Radius  \: of  \: inscribed \: circle( r)=  \frac{6 }{ 6 } }}}

{: :  \implies{ \sf{Radius  \: of  \: inscribed \: circle (r)=  1 }}}

 \pmb{ \bf{After \:  that,}}

\pink{➠}{ \sf{\dfrac{Area\:of\:inscribed \: circle(s_1)}{Area\:of\:circumscribed \: circle(s_2)}}}

\pink{➠}{ \sf{\dfrac{\pi{r}^{2}}{\pi{R}^{2} } =  \frac{ {(1)}^{2} }{ ({ \frac{5}{2}) }^{2} } }}

\pink{➠}{ \sf{\dfrac{\pi{r}^{2}}{\pi{R}^{2} } =    \frac{4}{25} }}

 \bf{Hence,}

{\pink{➠}{ \sf{  \frac{4}{25} \: is \:  the  \: correct  \: answer.}}}

\large{ \pmb{ \underline{ \underline{\frak{ \color{green}{Diagram::}}}}}}

{\pink{➠}{ \sf{Kindly  \:refer  \: the  \: attachments.. }}}

\large{ \pmb{ \underline{ \underline{\frak{ \color{orange}{Know  \: more  \: about  \: circle::}}}}}}

{\pink{➠}{ \bf{ Inscribed  \: circle:{ \sf{A \: triangle \: is \: a \: circle \: contained \: in \: the \:circle \: such \: that \: just }}}}}

{\sf{touches\: the \: side \: of \: triangle. }}

{\pink{➠}{ \bf{Circumscribed  \: circle:{ \sf{A \: triangle \: is \: a \: circle \: containing \: the  \: triangle\:such \: that    }}}}}

 \sf{\:vertices \:of \: the \: triangle \: touches \:the \: circumference \: of \: circle.\:  \:  \:  \:  \:  }

\bf{Note:}

\pink{➠}\sf{Kindly\:swipe\:left-right\: to \:see\: full\: answer.}

Attachments:
Similar questions