Math, asked by Anonymous, 4 months ago


 \sf \scriptsize{ABCD \:  is  \: a  \: cyclic \:  quadrilateral \:  whose  \: side  \: AB  \: is  \: a  \: diameter \:  of \:  the  \: circle  \: through  \: A ,B,C, \: D. }  \\ \sf \scriptsize{If \:  angle   \: \angle ADC = 130  \: Find \:  angle   \:   \: \angle \: BAC.}

Answers

Answered by Anonymous
73

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\boxed{\bf{\red{\fcolorbox{blue}{white}{Answer}}}}

 \sf \scriptsize \red{Given = }{ ABCD \:  is  \: a \:  cyclic \:  quadrilateral \:  whose \:  side \:  AB \:  is \:  a \:  diameter.}  \\ \sf \scriptsize { \angle \: ADC = 130 \degree }

 \sf \scriptsize \red{To \:find =  }{\angle \: BAC}

 \sf \scriptsize \red{Procedure = }{  \angle \: D \:  + \angle \:  B = 180 °   \:  \:  \:  \: ....(Opposite  \: angles \:  of \:  a  \: cyclic \:  quadrilateral. \: )}

 \sf \scriptsize{As \:  \:   \angle \: D = 130°   … (given) }\\ \sf \scriptsize { \angle\:B = 180° - 130° = 50°}

 \sf \scriptsize { \angle \: ACB = 90°  \:  \:  \:  \:  \:  \:  \:  (Angles  \: in  \: a \:  semicircle \: )}  \\ \sf \scriptsize{In   \: \triangle \: ABC ,  \angle \: BAC +  \angle \: ABC +  \angle \: ACB = 180° [Sum\: of\: three\: angle\: of\: a\: \triangle \:is\: always\: 180° ]} \\  \sf \scriptsize{ \implies\angle \: BAC + 50°+90° = 180°} \\  \sf \scriptsize{  \implies \: \angle \: BAC = 180° - 90° -50° = }\red{  \: 40°.}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf \scriptsize \red{Note = }{ Scroll \:  From \:  Left  \: to  \: right \: side \: to \: see \: the} \\  \sf \scriptsize{ \: whole \:  Solution\:of \:your \: question. }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions