Math, asked by Anonymous, 1 month ago


 \sf \: Simplify \:  \sec A \: (1 -  \sin A ) \: (sin A  +  tan A).

Answers

Answered by llxxkrithikaxxll
29

 \\ tan (a) \: +sec (a)  \: tan (a)  \: — sin  \: (a) \:  tan \:  (a)  \: \\  \\  \\  \\ - tan² (a)

Answered by Anonymous
39

Answer:

{ \large{ \underline{ \pmb{ \sf{ \red{Correct  \: Question : }}}}}}

{\sf{SecA(1-SinA)(SecA+TanA)}}

{ \large{ \underline{ \pmb{ \sf{ \red{Solution:}}}}}}

{ \longmapsto  { \sf{ \frac{1}{CosA} (1-SinA)\bigg\{ \frac{1}{CosA}+ \frac{SinA}{CosA} \bigg\} }}} \\

{ \longmapsto{ \sf{ \frac{1-SinA}{CosA}  \bigg \{ \frac{1+SinA}{CosA}\bigg\} }}} \\

{ \longmapsto{ \sf{ \frac{(1+SinA)(1-SinA)}{Cos²A} }}} \\

{ \longmapsto{ \sf{ \frac{1 -  {Sin}^{2} A}{ {Cos}^{2} A} }}} \\

{ \longmapsto{ \sf{ \frac{ {Cos}^{2} A}{ {Cos}^{2}A } }}} \\

{ \longmapsto{ \sf{1}}}

{ \therefore{ \underline{  \pmb{{\sf{SecA(1-SinA)(SecA+TanA) = 1}}}}}}

Similar questions