Math, asked by jhotibhapulle, 1 year ago

\sf\: Sin\theta + Sin^2 \theta = 1

Then;

\sf\: Cos^4 \theta + Cos^8 \theta + 2Cos^6 \theta

Answers

Answered by littlestarb054
87

\bf\huge\textbf {\underline {\underline {Solution :-}}} \\ \\ \\ \bf\huge {\implies { Sin\theta + Sin^2 \theta = 1}} \\ \\ \\ \bf\huge {\implies {Sin\theta = 1 - Sin^2 \theta}} \\ \\ \\ \bf\huge {\implies {Sin\theta = Cos^2 \theta }} \\ \\ \\ \bf\huge {\implies{Cos^4 \theta + Cos^8 \theta + 2Cos^6 \theta}} \\ \\ \\ \bf\huge {\implies { (Cos^2 \theta)^2 + (Cos^4 \theta)^2 + 2 Cos^2 \theta × Cos^4 \theta}} \\ \\ \\ \bf\huge {\implies{(Cos^2 \theta + Cos^4 \theta)^2}} \\ \\ \\ \bf\huge {\implies { (Cos^2 \theta + Sin^2 \theta )^2 = 1}} \\ \\ \\ \bf\huge\textbf {\underline {\underline {Identity \: Used :-}}} \\ \\ \\ \bf\huge{\implies {  Sin^2 \theta + Cos^2 \theta = 1 }}


Anonymous: @Cybary
littlestarb054: what
Anonymous: ¬_¬
littlestarb054: U can search answers in any where
littlestarb054: I answered own
littlestarb054: Don't chat here sachin sir will disturb
Anonymous: perfect.
Anonymous: #pretty one
littlestarb054: thanks
Anonymous: ☺❤
Answered by Anonymous
73

Answer :-

→ 1 .

Step-by-step explanation :-

We have ,

 \because \sf\:  \sin\theta +  \sin^2 \theta = 1 . \\  \\  \sf \implies \sin \theta = 1 -  { \sin}^{2}  \theta. \\  \\ \large \sf  \therefore \sin \theta =  { \cos}^{2}  \theta.

Now,

To find :-

 \because\sf \cos^4 \theta +  \cos^8 \theta + 2 \cos^6 \theta. \\  \\  =  \sf {( { \cos}^{2} \theta) }^{2}   +   {( { \cos}^{4}  \theta)}^{2}  + 2 \times   { \cos}^{2}  \theta \times  { \cos}^{4}  \theta. \\  \\  \sf =  {( { \cos}^{2}  \theta +  { \cos}^{4} \theta) }^{2} . \:  \:  \:  \:  \:  \{ {a}^{2}  +  {b}^{2}  - 2ab =  {(a - b)}^{2} . \} \\  \\  = {( { \cos}^{2}  \theta +  { \cos}^{2} \theta \times  { \cos}^{2} \theta )  }^{2}. \\  \\  = {( { \cos}^{2}  \theta +  \sin\theta \times  \sin \theta) }^{2}.  \:  \:  \:  \:  \:  \:  \:  \{  { \cos}^{2} \theta =  \sin \theta \} \\  \\   \sf = {( { \cos}^{2}  \theta +  { \sin}^{2} \theta) }^{2}. \\  \\  \sf =  {(1)}^{2} . \\  \\  \huge \pink{ \boxed{ \boxed{ \it = 1.}}}

Hence, it is solved.


littlestarb054: sir well explained
littlestarb054: you are too great
jhotibhapulle: great answer
littlestarb054: yes his answers are mind blowing
Anonymous: perfect :)
littlestarb054: thanks but sachin sir answer is best
littlestarb054: that's why brainliest answer
Similar questions