Math, asked by Anonymous, 2 months ago


\sf\small\orange{Given:-}

✈︎In the figure, AB is a diameter of the circle, AC = 6 cm and BC = 8 cm. Find the area of the shaded region. [Use π = 3.14].

Attachments:

Answers

Answered by jeevankishorbabu9985
4

Answer:

Given:

  • AB is the diameter =d of a circle.

ΔABC has the diameter AB as base & the point C is on the circumference.

  • AC=6 cm and BC=8 cm.

 \red{ \tt{To find out:</p><p></p><p>Area of shaded portion in the given circle.}}</p><p></p><p>

  \huge {\blue{\bigstar \: Solution:}}

∠ACB=90* (* refers to Degree ex: x^0 degrees)

since ΔABC has been inscribed in a semicircle.

∴ΔABC is a right one with AB as hypotenuse . . . . .(i)

applying Pythagoras theorem, we have

 \pink{ \huge{AB= \sqrt{{(AC) }^{2} +{(BC)}^{2} }= \sqrt{{(6) }^{2} +{(8)}^{2}  cm}=10 cm=d. }}</u></em></strong></p><p></p><p></p><p><strong><em><u>[tex] \pink{ \huge{AB= \sqrt{{(AC) }^{2} +{(BC)}^{2} }= \sqrt{{(6) }^{2} +{(8)}^{2}  cm}=10 cm=d. }}

∴ The radius of the given circle

 \huge \bf \green{= \frac d  2= \dfrac{10}{2} \: cm=5 cm. }

 \tiny{ \orange{i.e  \:  \:  \: The \:  \:  \:  Area \:  \:  \:  of  \:  \:  \: circle ={πr }^{2} =3.14×{5 }^{2}{ cm }^{2} ={78.5cm }^{2} . }}

 \red  { \huge{Again, Area  \: of  \: ΔABC= \frac12×AC×BC (by 1)}}

 \large{ \color{cyan}= \frac12×6×{8cm }^{2} =24{cm }^{2} .}

Now,

  • Area of shaded region = Area of circle − area of ΔABC

=(78.5−24)cm²=54.5cm².

Step-by-step explanation:

Thank you

Answered by Anonymous
40

Answer:

Gɪɴ :

AB is a diameter of the circle

  • ➛ AC = 6 cm
  • ➛ BC = 8 cm

\begin{gathered}\end{gathered}

T Fɪɴ :

  • ➛ The area of the shaded region.

\begin{gathered}\end{gathered}

Sʟɪɴ :

☼ Finding diameter of circle by applying Pythagoras theorem in right angled triangle ACB :-

\longrightarrow{\underline{\boxed{\pmb{\sf{{(AB)}^{2}  = {(AC)}^{2}  + {(CB)}^{2}}}}}}

 \longrightarrow\sf {(AB)}^{2}  = {(AC)}^{2}  + {(CB)}^{2}

 \longrightarrow\sf {(AB)}^{2}  = {(6)}^{2}  + {(8)}^{2}

 \longrightarrow\sf {(AB)}^{2}  = {(6 \times 6)} + {(8 \times 8)}

 \longrightarrow\sf {(AB)}^{2}  = {(36)} + {(64)}

 \longrightarrow\sf{{(AB)}^{2}=36 + 64}

 \longrightarrow\sf{{(AB)}^{2}=100}

 \longrightarrow\sf{(AB)= \sqrt{100} }

 \longrightarrow\sf{(AB)= \sqrt{10 \times 10} }

\longrightarrow\sf{\underline{\underline{\red{(AB)= 10 \: cm}}}}

∴ The diameter of circle is 10 cm.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Finding the radius of radius of circle :-

\dashrightarrow{\underline{\boxed{\pmb{\sf{Radius =  \dfrac{Diameter}{2}}}}}}

\dashrightarrow{\sf{Radius =  \dfrac{Diameter}{2}}}

\dashrightarrow{\sf{Radius =  \dfrac{10}{2}}}

\dashrightarrow{\sf{Radius =   \cancel{\dfrac{10}{2}}}}

\dashrightarrow{\sf{\underline{\underline{\red{Radius = 5 \: cm}}}}}

∴ The radius of circle is 5 cm.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Finding area of circle :-

\longrightarrow\underline{\boxed{\pmb{\sf{Area  \: of  \: circle =  \pi {r}^{2}}}}}

\longrightarrow{\sf{Area  \: of  \: circle =  \pi {r}^{2}}}

\longrightarrow{\sf{Area  \: of  \: circle =  3.14{(5)}^{2}}}

\longrightarrow{\sf{Area  \: of  \: circle =  3.14{(5 \times 5)}}}

\longrightarrow{\sf{Area  \: of  \: circle =  3.14{(25)}}}

\longrightarrow{\sf{Area  \: of  \: circle =  3.14 \times 25}}

\longrightarrow{\sf{\underline{\underline{\red{Area  \: of  \: circle = 78.5 \:  {cm}^{2}}}}}}

∴ The area of circle is 78.5 cm².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Finding the area of right angled triangle :-

{\dashrightarrow{\underline{\boxed{\pmb{\sf{Area \:  of \:  triangle = \dfrac{1}{2} \times  Base  \times Height }}}}}}

{\dashrightarrow{\sf{Area \:  of \:  triangle = \dfrac{1}{2} \times  Base  \times Height }}}

{\dashrightarrow{\sf{Area \:  of \:  triangle = \dfrac{1}{2} \times AC  \times CB}}}

{\dashrightarrow{\sf{Area \:  of \:  triangle = \dfrac{1}{2} \times 6 \times 8}}}

{\dashrightarrow{\sf{Area \:  of \:  triangle = \dfrac{1}{2} \times 48}}}

{\dashrightarrow{\sf{Area \:  of \:  triangle = \dfrac{48}{2}}}}

{\dashrightarrow{\sf{Area \:  of \:  triangle =  \cancel{\dfrac{48}{2}}}}}

{\dashrightarrow{\sf{\underline{\underline{\red{Area \:  of \:  triangle = 24 \: {cm}^{2}}}}}}}

∴ The area of right angled triangle is 24 cm².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Now, finding the area of shaded region :-

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Area  \:  of \: shaded \: region = Area  \: of \: circle  - Area \:  of \:  triangle}}}}}}}

{\longrightarrow{\small{\sf{Area  \:  of \: shaded \: region = Area  \: of \: circle  - Area \:  of \:  triangle}}}}

{\longrightarrow{\sf{Area  \:  of \: shaded \: region = 78.5 - 24}}}

{\longrightarrow{\sf{\underline{\underline{\red{Area  \:  of \: shaded \: region = 54.5 \:  {cm}^{2}}}}}}}

The area of shaded region is 54.5 cm².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Lᴇᴀʀɴ Mᴏʀᴇ :

\begin{gathered}\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}\end{gathered}

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

\begin{gathered}\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&amp;\bf Volume\ formula&amp;\bf Surface\ area formula\\\cline{1-3}\sf Cube&amp;\tt l^3}&amp;\tt 6l^2\\\cline{1-3}\sf Cuboid&amp;\tt lbh&amp;\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&amp;\tt {\pi}r^2h&amp;\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&amp;\tt \pi{h}(R^2-r^2)&amp;\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&amp;\tt 1/3\ \pi{r^2}h&amp;\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&amp;\tt 4/3\ \pi{r}^3&amp;\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&amp;\tt 2/3\ \pi{r^3}&amp;\tt 3\pi{r}^2\\\cline{1-3}\end{array}\end{gathered}

\overline{\underline{\rule{220pt}{2.5pt}}}

Attachments:
Similar questions