Math, asked by THEmultipleTHANKER, 3 months ago


\sf \: Solve : \: \dfrac{1}{x} - \dfrac{1}{x - 2} = 3

Answers

Answered by muskan2039
5

Answer:

go through the attachment

hope it helps

Attachments:
Answered by Anonymous
23

Required Answer:-

According to the question

 \red \implies \boxed {\frac{1}{x}  -  \frac{1}{x}  - 2 = 3}

Calculation:-

 \pink \rightarrow \frac{1}{x }  -  \frac{1}{x}  - 2 = 3

 \pink \rightarrow(x - 2) - x

 \pink \rightarrow3x(x - 2)

 \pink \rightarrow x - 2 - x

 \pink \rightarrow  {3x}^{2}  - 6x

 \pink \rightarrow  {3x}^{2}  - 6x + 2 = 0

 \pink \rightarrow x =  \frac{ - b  \: +  \:   \sqrt{ {b}^{2}  \: - \:  4ac }  }{29}

 { \blue{ \fbox{ \pink{a = 3, \: b =  - 6, \: c = 2}}}}

 \boxed{x =  -   \frac{ - ( - 6) + ( - 6) ^{2} - 4 \times 3 \times 2 }{2 \times 3} }

 \pink \rightarrow x =  \frac{6 +  \sqrt{36 - 24} }{6}

 \pink \rightarrow x =  \frac{6 +  \sqrt{12} }{6}

 \pink \rightarrow x =  \frac{6 + 2 \sqrt{3} }{6}

 \pink \rightarrow x =  \frac{3 + 1 \sqrt{3} }{3}

 \pink \rightarrow \sf Thus,  \mathbb  x =  \frac{3 + 1 \sqrt{3} }{3}

Therefore, roots of quadratic equation

  \boxed{\frac{1}{x}  -  \frac{1}{x} - 2 = 3 \sf  \: are  \:  \mathbb x =  \frac{3 + 1 \sqrt{3} }{3}, x= \frac{3 - 1 \sqrt{3} }{3}  }

__________________________________

Swipe left to see the full answer

Hope the above concept is clear !

Similar questions